Skip to main content

Mathematical Models of Quantum Computer

  • Chapter

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

A quantum computer is usually modeled mathematically as a Quantum Turing Machine (QTM) or a uniform family of quantum circuits, which is equivalent to a quantum Turing machine. QTM is a quantum version of the classical Turing machine described in Chap. 2. QTM was introduced by Deutsch and has been extensively studied by Bernstein and Vasirani. The basic properties of the quantum Turing machine and quantum circuits will be described in this chapter. In the last section of the present chapter, we introduce a generalized QTM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barenco, A., Bennett, C.H., Cleve, R., DiVicenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  2. Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proc. of the 25th Annual ACM Symposium on Theory of Computing, pp. 11–22. ACM, New York (1993). SIAM J. Comput. 26, 1411 (1997)

    Google Scholar 

  3. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond., Ser. A 400, 96–117 (1985)

    ADS  Google Scholar 

  4. Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. Ser. A 425, 73–90 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Freudenberg, W., Ohya, M., Watanabe, N.: Generalized Fock space approach to Fredkin-Toffoli-Milburn gate. TUS preprint (2001)

    Google Scholar 

  6. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 78(2), 325 (1997)

    Article  ADS  Google Scholar 

  7. Iriyama, S., Ohya, M., Volovich, I.V.: Generalized quantum Turing machine and its application to the SAT chaos algorithm. In: QP-PQ: Quantum Prob. White Noise Anal., Quantum Information and Computing, vol. 19, pp 204–225. World Scientific, Singapore (2006)

    Google Scholar 

  8. Iriyama, S., Miyadera, T., Ohya, M.: Note on a universal quantum Turing machine. Phys. Lett. A 372, 5120–5122 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. Iriyama, S., Ohya, M.: Review on quantum chaos algorithm and generalized quantum Turing machine. In: QP-PQ: Quantum Prob. White Noise Anal., Quantum Bio-Informatics, vol. 21, pp. 126–141. World Scientific, Singapore (2008)

    Google Scholar 

  10. Miyadera, T., Ohya, M.: On halting process of quantum Turing machine. Open Syst. Inf. Dyn. 12(3), 261–264 (2006)

    Article  MathSciNet  Google Scholar 

  11. Myers, J.M.: Can a universal quantum computer be fully quantum? Phys. Rev. Lett. 78, 1823 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Ohya, M., Masuda, N.: NP problem in quantum algorithm. Open Syst. Inf. Dyn. 7(1), 33–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ohya, M., Volovich, I.V.: Quantum computing, NP-complete problems and chaotic dynamics. In: Hida, T., Saito, K. (eds.) Quantum Information, pp. 161–171. World Scientific, Singapore (2000)

    Google Scholar 

  14. Ohya, M., Volovich, I.V.: Quantum computing and chaotic amplification. J. Opt. B 5(6), 639–642 (2003)

    MathSciNet  ADS  Google Scholar 

  15. Ohya, M., Volovich, I.V.: New quantum algorithm for studying NP-complete problems. Rep. Math. Phys. 52(1), 25–33 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Ozawa, M.: Quantum nondemolition monitoring of universal quantum computers. Theor. Inf. Appl. 34, 379 (2000)

    Article  MATH  Google Scholar 

  17. Shi, Y.: Remarks on universal quantum computer. Phys. Lett. A 293, 277 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Ohya .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohya, M., Volovich, I. (2011). Mathematical Models of Quantum Computer. In: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0171-7_11

Download citation

Publish with us

Policies and ethics