Skip to main content

The Novel Roles of Glucagon-Like Peptide-1, Angiotensin II, and Vitamin D in Islet Function

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

Pancreatic islets secrete multiple factors that act as endocrine, paracrine, and/or autocrine pathways in regulating pancreatic endocrine function. As such, the islets perform critical biological activities in synthesizing metabolic peptide hormones, notably insulin and regulating body glucose homeostasis. These functions are controlled by various conditions and signaling molecules, particularly nutrients like glucose levels. However, more and more clinically relevant regulators, including molecules which stimulate islet β-cell metabolism, regulate β-cell [Ca2+] homeostasis and related channels or adjust β-cell membrane, and nuclear receptors activity continue to be discovered and characterized. Of great interest in this context, glucagon-like peptide-1 can improve glycemic control by regulating insulin secretion and islet cell mass; vitamin D can regulate islet physiology directly by binding its receptors; in addition, the peptide hormone angiotensin II has been implicated in islet function and exhibits effects on islet cell secretion as well as cell mass. In this chapter, these three novel regulators in islet function and thus its clinical relevance to type 2 diabetes mellitus will undergo critical appraisal. Since all of these molecules have biological interactions with pancreatic islets, potential relationships may exist among them and they will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elayat AA, el-Naggar MM, Tahir M. An immunocytochemical and morphometric study of the rat pancreatic islets. J Anat 1995 ;86 (Pt 3):629–37.

    Google Scholar 

  2. Henquin JC. Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 2004;53 Suppl 3:S48–58.

    PubMed  CAS  Google Scholar 

  3. Sato Y, Nenquin M, Henquin JC. Relative contribution of Ca2+-dependent and Ca2+-independent mechanisms to the regulation of insulin secretion by glucose. FEBS Lett 1998;421:115–9.

    PubMed  CAS  Google Scholar 

  4. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52:102–10

    PubMed  CAS  Google Scholar 

  5. Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 1983;71:1544–53.

    PubMed  CAS  Google Scholar 

  6. Winzell MS, Ahren B. G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes. Pharmacol Ther 2007;116:437–48.

    PubMed  CAS  Google Scholar 

  7. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470–512.

    PubMed  CAS  Google Scholar 

  8. Gautier JF, Choukem SP, Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab 2008;34 Suppl 2:S65–72.

    PubMed  CAS  Google Scholar 

  9. Pederson RA, Schubert HE, Brown JC. Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 1975;24:1050–6.

    PubMed  CAS  Google Scholar 

  10. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 2005;57:279–88.

    PubMed  CAS  Google Scholar 

  11. Drucker DJ. The biology of incretin hormones. Cell Metab 2006;3:153–65.

    PubMed  CAS  Google Scholar 

  12. Yip RG, Wolfe MM. GIP biology and fat metabolism. Life Sci 2000;66:91–103.

    PubMed  CAS  Google Scholar 

  13. Trumper A, Trumper K, Horsch D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells. J Endocrinol 2002;174:233–46.

    PubMed  CAS  Google Scholar 

  14. Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 2001;50:1004–11.

    PubMed  CAS  Google Scholar 

  15. Zhou J, Livak MF, Bernier M, Muller DC, Carlson OD, Elahi D, Maudsley S, Egan JM. Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am J Physiol Endocrinol Metab 2007;293: E538–47.

    PubMed  CAS  Google Scholar 

  16. Fehmann HC, Goke R, Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 1995;16:390–410.

    PubMed  CAS  Google Scholar 

  17. Vilsboll T, Holst JJ. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia 2004;47:357–66.

    PubMed  CAS  Google Scholar 

  18. Lauritsen KB, Christensen KC, Stokholm KH. Gastric inhibitory polypeptide (GIP) release and incretin effect after oral glucose in obesity and after jejunoileal bypass. Scand J Gastroenterol 1980;15:489–95.

    PubMed  CAS  Google Scholar 

  19. Meier JJ, Nauck MA. GIP as a potential therapeutic agent? Horm Metab Res 2004;36: 859–66.

    PubMed  CAS  Google Scholar 

  20. Schmidt WE, Siegel EG, Creutzfeldt W. Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 1985;28:704–7.

    PubMed  CAS  Google Scholar 

  21. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007;132:2131–57.

    PubMed  CAS  Google Scholar 

  22. Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995;56:117–26.

    PubMed  CAS  Google Scholar 

  23. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 2007;104:15069–74.

    PubMed  CAS  Google Scholar 

  24. Reimann F, Gribble FM. Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 2002;51:2757–63.

    PubMed  CAS  Google Scholar 

  25. Gribble FM, Williams L, Simpson AK, Reimann F. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 2003;52:1147–54.

    PubMed  CAS  Google Scholar 

  26. Orskov C, Wettergren A, Holst JJ. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 1993;42:658–61.

    PubMed  CAS  Google Scholar 

  27. Dhanvantari S, Seidah NG, Brubaker PL. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol Endocrinol 1996;10:342–55.

    PubMed  CAS  Google Scholar 

  28. Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995;136:3585–96.

    PubMed  CAS  Google Scholar 

  29. Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Goke R, Goke B, Thole H, Zimmermann B, Voigt K. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept 1995;58:149–56.

    PubMed  CAS  Google Scholar 

  30. Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 1992;89:8641–5.

    PubMed  CAS  Google Scholar 

  31. Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 1993;42:1678–82.

    PubMed  CAS  Google Scholar 

  32. Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels 2002;8:179–88.

    PubMed  CAS  Google Scholar 

  33. Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival. Diabetes Metab 34 Suppl 2008;2:S73–7.

    Google Scholar 

  34. Drucker DJ. Minireview: the glucagon-like peptides. Endocrinology 2001;142:521–7.

    PubMed  CAS  Google Scholar 

  35. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379:69–72.

    PubMed  CAS  Google Scholar 

  36. Barragan JM, Rodriguez RE, Eng J, Blazquez E. Interactions of exendin-(9-39) with the effects of glucagon-like peptide-1-(7-36) amide and of exendin-4 on arterial blood pressure and heart rate in rats. Regul Pept 1996;67:63–68.

    PubMed  CAS  Google Scholar 

  37. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, Tanaka K, Drucker DJ, Seino Y, Inagaki N. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 2008;149:574–9.

    PubMed  CAS  Google Scholar 

  38. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359:824–30.

    PubMed  CAS  Google Scholar 

  39. Meier JJ, Gallwitz B, Askenas M, Vollmer K, Deacon CF, Holst JJ, Schmidt WE, Nauck MA. Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia 2005;48:1872–81.

    PubMed  CAS  Google Scholar 

  40. Vaag AA, Holst JJ, Volund A, Beck-Nielsen HB. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)––evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996;135:425–32.

    PubMed  CAS  Google Scholar 

  41. Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker DJ, Wollheim C, Burcelin R, Thorens B. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004;113:635–45.

    PubMed  CAS  Google Scholar 

  42. Yip RG, Boylan MO, Kieffer TJ, Wolfe MM. Functional GIP receptors are present on adipocytes. Endocrinology 1998;139:4004–7.

    PubMed  CAS  Google Scholar 

  43. Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, Drucker DJ. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996;2:1254–8.

    PubMed  CAS  Google Scholar 

  44. Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 1996;19:580–6.

    PubMed  CAS  Google Scholar 

  45. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hufner M, Schmiegel WH. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002;87:1239–46.

    PubMed  CAS  Google Scholar 

  46. Xu G, Kaneto H, Lopez-Avalos MD, Weir GC, Bonner-Weir S. GLP-1/exendin-4 facilitates beta-cell neogenesis in rat and human pancreatic ducts. Diabetes Res Clin Pract 2006;73:107–10.

    PubMed  CAS  Google Scholar 

  47. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999;48:2270–6.

    PubMed  CAS  Google Scholar 

  48. Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 1977;57:313–70.

    PubMed  CAS  Google Scholar 

  49. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 2006;281:35137–46.

    PubMed  CAS  Google Scholar 

  50. Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol 2004;286:H1597–1602.

    PubMed  CAS  Google Scholar 

  51. Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, Dominiak P, Liao JK. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004;24:1842–7.

    PubMed  CAS  Google Scholar 

  52. Calo LA, Pessina AC. RhoA/Rho-kinase pathway: much more than just a modulation of vascular tone. Evidence from studies in humans. J Hypertens 2007;25:259–64.

    PubMed  CAS  Google Scholar 

  53. Leung PS. The physiology of a local renin-angiotensin system in the pancreas. J Physiol 2007;580:31–7.

    PubMed  CAS  Google Scholar 

  54. Leung PS. The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein Pept Sci 2004;5:267–73.

    PubMed  CAS  Google Scholar 

  55. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006;86:747–803.

    PubMed  CAS  Google Scholar 

  56. Leung PS, Chappell MC. A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol 2003;35:838–46.

    PubMed  CAS  Google Scholar 

  57. Leung PS, Chan WP, Nobiling R. Regulated expression of pancreatic renin-angiotensin system in experimental pancreatitis. Mol Cell Endocrinol 2000;166:121–8.

    PubMed  CAS  Google Scholar 

  58. Leung PS, Chan WP, Wong TP, Sernia C. Expression and localization of the renin-angiotensin system in the rat pancreas. J Endocrinol 1999;160:13–9.

    PubMed  CAS  Google Scholar 

  59. Chappell MC, Millsted A, Diz DI, Brosnihan KB, Ferrario CM. Evidence for an intrinsic angiotensin system in the canine pancreas. J Hypertens 1991;9:751–9.

    PubMed  CAS  Google Scholar 

  60. Tahmasebi M, Puddefoot J, Inwang E, Vinson G. The tissue renin-angiotensin system in human pancreas. J Endocrinol 1999;161:317–22.

    PubMed  CAS  Google Scholar 

  61. Sealey JE, Catanzaro DF, Lavin TN, Gahnem F, Pitarresi T, Hu LF, Laragh JH. Specific prorenin/renin binding (ProBP). Identification and characterization of a novel membrane site. Am J Hypertens 1996;9:491–502.

    PubMed  CAS  Google Scholar 

  62. Tikellis C, Wookey PJ, Candido R, Andrikopoulos S, Thomas MC, Cooper ME. Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat. Diabetes 2004;53:989–97.

    PubMed  CAS  Google Scholar 

  63. Campbell DJ, Habener JF. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 1986;78:31–9.

    PubMed  CAS  Google Scholar 

  64. Regoli M, Bendayan M, Fonzi L, Sernia C, Bertelli E. Angiotensinogen localization and secretion in the rat pancreas. J Endocrinol 2003;179:81–89.

    PubMed  CAS  Google Scholar 

  65. Sernia C. Location and secretion of brain angiotensinogen. Regul Pept 1995;57:1–18.

    PubMed  CAS  Google Scholar 

  66. Leung KK, Leung PS. Effects of hyperglycemia on angiotensin II receptor type 1 expression and insulin secretion in an INS-1E pancreatic beta-cell line. JOP 2008;9:290–9.

    PubMed  Google Scholar 

  67. Leung PS, Chan HC, Wong PY. Immunohistochemical localization of angiotensin II in the mouse pancreas. Histochem J 1998;30:21–5.

    PubMed  CAS  Google Scholar 

  68. Lau T, Carlsson PO, Leung PS. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia 2004;47:240–8.

    PubMed  CAS  Google Scholar 

  69. Fliser D, Schaefer F, Schmid D, Veldhuis JD, Ritz E. Angiotensin II affects basal, pulsatile, and glucose-stimulated insulin secretion in humans. Hypertension 1997;30:1156–61.

    PubMed  CAS  Google Scholar 

  70. Dunning BE, Moltz JH, Fawcett CP. Actions of neurohypophysial peptides on pancreatic hormone release. Am J Physiol 1984;246:E108–14.

    PubMed  CAS  Google Scholar 

  71. Kampf C, Lau T, Olsson R, Leung PS, Carlsson PO. Angiotensin II type 1 receptor inhibition markedly improves the blood perfusion, oxygen tension and first phase of glucose-stimulated insulin secretion in revascularised syngeneic mouse islet grafts. Diabetologia 2005;48: 1159–67.

    PubMed  CAS  Google Scholar 

  72. Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia 1998;41:127–33.

    PubMed  CAS  Google Scholar 

  73. Chu KY, Lau T, Carlsson PO, Leung PS. Angiotensin II type 1 receptor blockade improves beta-cell function and glucose tolerance in a mouse model of type 2 diabetes. Diabetes 2006;55:367–74.

    PubMed  CAS  Google Scholar 

  74. Janiak P, Bidouard JP, Cadrouvele C, Poirier B, Gouraud L, Grataloup Y, Pierre F, Bruneval P, O’Connor SE, Herbert JM. Long-term blockade of angiotensin AT1 receptors increases survival of obese Zucker rats. Eur J Pharmacol 2006;534:271–9.

    PubMed  CAS  Google Scholar 

  75. Cheng Q, Law PK, de Gasparo M, Leung PS. Combination of the dipeptidyl peptidase IV inhibitor LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] with the angiotensin II type 1 receptor antagonist valsartan [N-(1-oxopentyl)-N-[[2’- (1H-tetrazol-5-yl)-[1,1’-biphenyl]-4-yl]methyl]-L-valine] enhances pancreatic islet morphology and function in a mouse model of type 2 diabetes. J Pharmacol Exp Ther 2008;327:683–91.

    PubMed  CAS  Google Scholar 

  76. Chu KY, Leung PS. Angiotensin II Type 1 receptor antagonism mediates uncoupling protein 2-driven oxidative stress and ameliorates pancreatic islet beta-cell function in young Type 2 diabetic mice. Antioxid Redox Signal 2007;9:869–78.

    PubMed  CAS  Google Scholar 

  77. Wong PF, Lee SS, Cheung WT. Immunohistochemical colocalization of type II angiotensin receptors with somatostatin in rat pancreas. Regul Pept 2004;117:195–205.

    PubMed  CAS  Google Scholar 

  78. Stroud ML, Stilgoe S, Stott VE, Alhabian O, Salman K. Vitamin D – a review. Aust Fam Physician 2008;37:1002–5.

    PubMed  Google Scholar 

  79. Holick MF. Vitamin D: A millenium perspective. J Cell Biochem 2003;88:296–307.

    PubMed  CAS  Google Scholar 

  80. Peechakara SV, Pittas AG. Vitamin D as a potential modifier of diabetes risk. Nat Clin Pract Endocrinol Metab 2008;4:182–3.

    PubMed  CAS  Google Scholar 

  81. Mathieu C, Gysemans C, Giulietti A, Bouillon R. Vitamin D and diabetes. Diabetologia 2005;48:1247–57.

    PubMed  CAS  Google Scholar 

  82. Vidal M, Ramana CV, Dusso AS. Stat1-vitamin D receptor interactions antagonize 1,25-dihydroxyvitamin D transcriptional activity and enhance stat1-mediated transcription. Mol Cell Biol 2002;22:2777–87.

    PubMed  CAS  Google Scholar 

  83. Maestro B, Davila N, Carranza MC, Calle C. Identification of a Vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 2003;84:223–30.

    PubMed  CAS  Google Scholar 

  84. Eerligh P, Koeleman BP, Dudbridge F, Jan Bruining G, Roep BO, Giphart MJ. Functional genetic polymorphisms in cytokines and metabolic genes as additional genetic markers for susceptibility to develop type 1 diabetes. Genes Immun 2004;5:36–40.

    PubMed  CAS  Google Scholar 

  85. DeLuca HF. Mechanism of action and metabolic fate of vitamin D. Vitam Horm 1967;25:315–67.

    PubMed  CAS  Google Scholar 

  86. van den Berg H. Bioavailability of vitamin D. Eur J Clin Nutr 1997;51 Suppl 1:S76–9.

    PubMed  Google Scholar 

  87. Cranney A, Horsley T, O’Donnell S, Weiler H, Puil L, Ooi D, Atkinson S, Ward L, Moher D, Hanley D, Fang M, Yazdi F, Garritty C, Sampson M, Barrowman N, Tsertsvadze A, Mamaladze V. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess 2007; (Full Rep):1–235.

    Google Scholar 

  88. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007;92: 2017–29.

    PubMed  CAS  Google Scholar 

  89. Calle C, Maestro B, Garcia-Arencibia M. Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Mol Biol 2008;9:65.

    PubMed  Google Scholar 

  90. Kajikawa M, Ishida H, Fujimoto S, Mukai E, Nishimura M, Fujita J, Tsuura Y, Okamoto Y, Norman AW, Seino Y. An insulinotropic effect of vitamin D analog with increasing intracellular Ca2+ concentration in pancreatic beta-cells through nongenomic signal transduction. Endocrinology 1999;140:4706–12.

    PubMed  CAS  Google Scholar 

  91. Norman AW. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 2006;147:5542–8.

    PubMed  CAS  Google Scholar 

  92. Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358:1500–3.

    PubMed  CAS  Google Scholar 

  93. Stene LC, Joner G. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study. Am J Clin Nutr 2003;78:1128–34.

    PubMed  CAS  Google Scholar 

  94. Reichel H, Koeffler HP, Tobler A, Norman AW. 1 alpha,25-Dihydroxyvitamin D3 inhibits gamma-interferon synthesis by normal human peripheral blood lymphocytes. Proc Natl Acad Sci U S A 1987;84:3385–9.

    PubMed  CAS  Google Scholar 

  95. Takeuchi A, Reddy GS, Kobayashi T, Okano T, Park J, Sharma S. Nuclear factor of activated T cells (NFAT) as a molecular target for 1alpha,25-dihydroxyvitamin D3-mediated effects. J Immunol 1998;160:209–18.

    PubMed  CAS  Google Scholar 

  96. Adorini L, Penna G, Giarratana N, Roncari A, Amuchastegui S, Daniel KC, Uskokovic M. Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands. J Steroid Biochem Mol Biol 2004;89–90:437–441.

    PubMed  Google Scholar 

  97. Hahn HJ, Kuttler B, Mathieu C, Bouillon R. 1,25-Dihydroxyvitamin D3 reduces MHC antigen expression on pancreatic beta-cells in vitro. Transplant Proc 1997;29:2156–7.

    PubMed  CAS  Google Scholar 

  98. Riachy R, Vandewalle B, Kerr Conte J, Moerman E, Sacchetti P, Lukowiak B, Gmyr V, Bouckenooghe T, Dubois M, Pattou F. 1,25-dihydroxyvitamin D3 protects RINm5F and human islet cells against cytokine-induced apoptosis: implication of the antiapoptotic protein A20. Endocrinology 2002;143:4809–19.

    PubMed  CAS  Google Scholar 

  99. Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 2004;79:820–5.

    PubMed  CAS  Google Scholar 

  100. Norman AW, Frankel JB, Heldt AM, Grodsky GM. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 1980;209:823–5.

    PubMed  CAS  Google Scholar 

  101. Sooy K, Schermerhorn T, Noda M, Surana M, Rhoten WB, Meyer M, Fleischer N, Sharp GW, Christakos S. Calbindin-D(28 k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28 k) knockout mice and beta cell lines. J Biol Chem 1999;274:34343–49.

    PubMed  CAS  Google Scholar 

  102. Rabinovitch A, Suarez-Pinzon WL, Sooy K, Strynadka K, Christakos S. Expression of calbindin-D(28 k) in a pancreatic islet beta-cell line protects against cytokine-induced apoptosis and necrosis. Endocrinology 2001;142:3649–55.

    PubMed  CAS  Google Scholar 

  103. Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am J Physiol 1994;267:E356–60.

    PubMed  CAS  Google Scholar 

  104. Cade C, Norman AW. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinology 1986;119:84–90.

    PubMed  CAS  Google Scholar 

  105. Boucher BJ, Mannan N, Noonan K, Hales CN, Evans SJ. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in east London Asians. Diabetologia 1995;38:1239–45.

    PubMed  CAS  Google Scholar 

  106. d’Emden MC, Dunlop M, Larkins RG, Wark JD. The in vitro effect of 1 alpha,25-dihydroxyvitamin D3 on insulin production by neonatal rat islets. Biochem Biophys Res Commun 1989;164:413–8.

    PubMed  Google Scholar 

  107. Boucher BJ. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome ‘X’? Br J Nutr 1998;79:315–27.

    PubMed  CAS  Google Scholar 

  108. de Boland AR, Norman AW. Influx of extracellular calcium mediates 1,25-dihydroxyvitamin D3-dependent transcaltachia (the rapid stimulation of duodenal Ca2+ transport). Endocrinology 1990;127:2475–80.

    PubMed  Google Scholar 

  109. Bourlon PM, Faure-Dussert A, Billaudel B. Modulatory role of 1,25 dihydroxyvitamin D3 on pancreatic islet insulin release via the cyclic AMP pathway in the rat. Br J Pharmacol 1997;121:751–8.

    PubMed  CAS  Google Scholar 

  110. Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 1992;130:159–66.

    PubMed  CAS  Google Scholar 

  111. Mu J, Woods J, Zhou YP, Roy RS, Li Z, Zycband E, Feng Y, Zhu L, Li C, Howard AD, Moller DE, Thornberry NA, Zhang BB. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of type 2 diabetes. Diabetes 2006;55:1695–1704.

    PubMed  CAS  Google Scholar 

  112. Knop FK, Vilsboll T, Hojberg PV, Larsen S, Madsbad S, Volund A, Holst JJ, Krarup T. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 2007;56:1951–59.

    PubMed  CAS  Google Scholar 

  113. Combettes MM. GLP-1 and type 2 diabetes: physiology and new clinical advances. Curr Opin Pharmacol 2006;6:598–605.

    PubMed  CAS  Google Scholar 

  114. Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 1998;41:271–8.

    PubMed  CAS  Google Scholar 

  115. Arulmozhi DK, Portha B, GLP-1 based therapy for type 2 diabetes. Eur J Pharm Sci 2006;28:96–108.

    PubMed  CAS  Google Scholar 

  116. Knudsen LB. Glucagon-like peptide-1: the basis of a new class of treatment for type 2 diabetes. J Med Chem 2004;47:4128–34.

    PubMed  CAS  Google Scholar 

  117. Kim JG, Baggio LL, Bridon DP, Castaigne JP, Robitaille MF, Jette L, Benquet C, Drucker DJ. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes 2003;52:751–9.

    PubMed  CAS  Google Scholar 

  118. Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000;141:4600–5.

    PubMed  CAS  Google Scholar 

  119. Yu BS, Wang AR. Glucagon-like peptide 1 based therapy for type 2 diabetes. World J Pediatr 2008;4:8–13.

    PubMed  CAS  Google Scholar 

  120. Holst JJ, Deacon CF. Glucagon-like peptide 1 and inhibitors of dipeptidyl peptidase IV in the treatment of type 2 diabetes mellitus. Curr Opin Pharmacol 2004;4:589–96.

    PubMed  CAS  Google Scholar 

  121. Hunziker D, Hennig M, Peters JU. Inhibitors of dipeptidyl peptidase IV–recent advances and structural views. Curr Top Med Chem 2005;5:1623–37.

    PubMed  CAS  Google Scholar 

  122. Demuth HU, McIntosh CH, Pederson RA. Type 2 diabetes––therapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta 2005;1751:33–44.

    PubMed  CAS  Google Scholar 

  123. Yu M, Moreno C, Hoagland KM, Dahly A, Ditter K, Mistry M, Roman RJ. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 2003;21:1125–35.

    PubMed  CAS  Google Scholar 

  124. Hirata K, Kume S, Araki S, Sakaguchi M, Chin-Kanasaki M, Isshiki K, Sugimoto T, Nishiyama A, Koya D, Haneda M, Kashiwagi A, Uzu T. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem Biophys Res Commun 2009;380:44–9.

    PubMed  CAS  Google Scholar 

  125. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest 2006;116: 1802–12.

    PubMed  CAS  Google Scholar 

  126. de Koning EJ, Bonner-Weir S, Rabelink TJ. Preservation of beta-cell function by targeting beta-cell mass. Trends Pharmacol Sci 2008;29:218–27.

    PubMed  Google Scholar 

  127. Homo-Delarche F, Calderari S, Irminger JC, Gangnerau MN, Coulaud J, Rickenbach K, Dolz M, Halban P, Portha B, Serradas P. Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 2006;55:1625–33.

    PubMed  CAS  Google Scholar 

  128. Leung PS, de Gasparo M. Involvement of the pancreatic renin-angiotensin system in insulin resistance and the metabolic syndrome. J Cardiometab Syndr 2006;1:197–203.

    PubMed  Google Scholar 

  129. Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 2007;21:20–7.

    PubMed  CAS  Google Scholar 

  130. Velasquez-Mieyer PA, Cowan PA, Perez-Faustinelli S, Nieto-Martinez R, Villegas-Barreto C, Tolley EA, Lustig RH, Alpert BS. Racial disparity in glucagon-like peptide 1 and inflammation markers among severely obese adolescents. Diabetes Care 2008;31:770–5.

    PubMed  CAS  Google Scholar 

  131. Gromada J, Brock B, Schmitz O, Rorsman P. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol 2004;95:252–62.

    PubMed  CAS  Google Scholar 

  132. Chan CB, Harper ME. Uncoupling proteins: role in insulin resistance and insulin insufficiency. Curr Diabetes Rev 2006;2:271–83.

    PubMed  CAS  Google Scholar 

  133. Onozato ML, Tojo A, Goto A, Fujita T, Wilcox CS. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int 2002;61:186–94.

    PubMed  CAS  Google Scholar 

  134. Chan CB, Saleh MC, Koshkin V, Wheeler MB. Uncoupling protein 2 and islet function. Diabetes 2004;53 Suppl 1:S136–42.

    PubMed  CAS  Google Scholar 

  135. Salehi A, Meidute Abaraviciene S, Jimenez-Feltstrom J, Ostenson CG, Efendic S, Lundquist I. Excessive islet NO generation in type 2 diabetic GK rats coincides with abnormal hormone secretion and is counteracted by GLP-1. PLoS ONE 2008;3:e2165.

    PubMed  Google Scholar 

  136. Merial C, Bouloumie A, Trocheris V, Lafontan M, Galitzky J. Nitric oxide-dependent downregulation of adipocyte UCP-2 expression by tumor necrosis factor-alpha. Am J Physiol Cell Physiol 2000;279:C1100–6.

    PubMed  CAS  Google Scholar 

  137. Resnick LM, Muller FB, Laragh JH. Calcium-regulating hormones in essential hypertension. Relation to plasma renin activity and sodium metabolism. Ann Intern Med 1986;105: 649–54.

    PubMed  CAS  Google Scholar 

  138. Lind L, Hanni A, Lithell H, Hvarfner A, Sorensen OH, Ljunghall S. Vitamin D is related to blood pressure and other cardiovascular risk factors in middle-aged men. Am J Hypertens 1995;8:894–901.

    PubMed  CAS  Google Scholar 

  139. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002;110:229–38.

    PubMed  CAS  Google Scholar 

  140. Kong J, Li YC. Effect of ANG II type I receptor antagonist and ACE inhibitor on vitamin D receptor-null mice. Am J Physiol Regul Integr Comp Physiol 2003;285:R255–61.

    PubMed  CAS  Google Scholar 

  141. Li YC. Vitamin D and the Renin-Angiotensin System. In: Feldman D (ed) Vitamin D, 2nd ed. London: Elsevier Academic Press; 2005.

    Google Scholar 

  142. Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int 2008;74:170–9.

    PubMed  CAS  Google Scholar 

  143. Silver J, Naveh-Many T, Mayer H, Schmelzer HJ, Popovtzer MM. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest 1986;78:1296–1301.

    PubMed  CAS  Google Scholar 

  144. Brown AJ, Dusso AS, Slatopolsky E. Vitamin D analogues for secondary hyperparathyroidism. Nephrol Dial Transplant 2002;17 Suppl 10:10–9.

    PubMed  CAS  Google Scholar 

  145. Malluche HH, Mawad H, Koszewski NJ. Update on vitamin D and its newer analogues: actions and rationale for treatment in chronic renal failure. Kidney Int 2002;62:367–74.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the General Research Fund from Research Grants Council of Hong Kong (CUHK 470709) and by the Focused Investment Scheme C from the Chinese University of Hong Kong, awarded to PSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Sing Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leung, P.S., Cheng, Q. (2010). The Novel Roles of Glucagon-Like Peptide-1, Angiotensin II, and Vitamin D in Islet Function. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_15

Download citation

Publish with us

Policies and ethics