Skip to main content

Single Fiber Analysis of Muscle Sympathetic Nerve Activity

  • Chapter
  • First Online:
Clinical Assessment of the Autonomic Nervous System

Abstract

Direct recording of multiunit efferent muscle sympathetic nerve activity (MSNA) by microneurography is the best method for quantifying sympathetic nerve activity in humans. It has been still recognized as a gold standard method for evaluation of sympathetic nerve activity in human. Recently, single-unit MSNA analysis was developed in humans. Single-unit MSNA reveals (1) firing frequency of single-unit MSNA, (2) multiple firing of single-unit MSNA within one cardiac interval, and (3) functionally different neuron activities, which could not be obtained by multiunit MSNA analysis. Single-unit MSNA provides additional information regarding actual sympathetic neuron firing to peripheral. Several studies have already demonstrated that single-unit MSNA analysis shed insight into the mechanism of actual central sympathetic firing to peripheral in several cardiovascular diseases. In this chapter, we describe the differences between analysis of multiunit and single-unit MSNA and discuss the advantages of single-unit MSNA recording.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59:919–57.

    CAS  PubMed  Google Scholar 

  2. Sundlof G, Wallin BG. The variability of muscle nerve sympathetic activity in resting recumbent man. J Physiol. 1977;272:383–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macefield VG, Wallin BG, Vallbo AB. The discharge behaviour of single vasoconstrictor motoneurones in human muscle nerves. J Physiol. 1994;481(Pt 3):799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macefield VG, Wallin BG. Respiratory and cardiac modulation of single sympathetic vasoconstrictor and sudomotor neurones to human skin. J Physiol. 1999;516(Pt 1):303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimmerly DS, O’Leary DD, Shoemaker JK. Test-retest repeatability of muscle sympathetic nerve activity: influence of data analysis and head-up tilt. Auton Neurosci. 2004;114:61–71. Burke SL, Lambert E, Head GA. New approaches to quantifying sympathetic nerve activity. Curr Hypertens Rep. 2011;13:249–57.

    Google Scholar 

  6. DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1517–24.

    CAS  PubMed  Google Scholar 

  7. Macefield VG, Elam M, Wallin BG. Firing properties of single postganglionic sympathetic neurones recorded in awake human subjects. Auton Neurosci. 2002;95:146–59.

    Article  PubMed  Google Scholar 

  8. Millar PJ, Murai H, Morris BL, Floras JS. Microneurographic evidence in healthy middle-aged humans for a sympathoexcitatory reflex activated by atrial pressure. Am J Physiol Heart Circ Physiol. 2013;305:H931–8.

    Article  CAS  PubMed  Google Scholar 

  9. Millar PJ, Murai HEART FAILUREloras JS. Paradoxical muscle sympathetic reflex activation in human heart failure. Circulation. 2015;131:459–68.

    Article  PubMed  Google Scholar 

  10. Murai H, Takata S, Maruyama M, Nakano M, Kobayashi D, Otowa K, et al. The activity of a single muscle sympathetic vasoconstrictor nerve unit is affected by physiological stress in humans. Am J Physiol Heart Circ Physiol. 2006;290:H853–60.

    Article  CAS  PubMed  Google Scholar 

  11. Macefield VG, Rundqvist B, Sverrisdottir YB, Wallin BG, Elam M. Firing properties of single muscle vasoconstrictor neurons in the sympathoexcitation associated with congestive heart failure. Circulation. 1999;100:1708–13.

    Article  CAS  PubMed  Google Scholar 

  12. Dibona GF, Sawin LL. Functional significance of the pattern of renal sympathetic nerve activation. Am J Physiol. 1999;277:R346–53.

    CAS  PubMed  Google Scholar 

  13. Lambert EA, Schlaich MP, Dawood T, Sari C, Chopra R, Barton DA, et al. Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover. J Physiol. 2011;589:2597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lambert E, Dawood T, Schlaich M, Straznicky N, Esler M, Lambert G. Single-unit sympathetic discharge pattern in pathological conditions associated with elevated cardiovascular risk. Clin Exp Pharmacol Physiol. 2008;35:503–7.

    Article  CAS  PubMed  Google Scholar 

  15. Huggett RJ, Scott EM, Gilbey SG, Bannister J, Mackintosh AF, Mary DA. Disparity of autonomic control in type 2 diabetes mellitus. Diabetologia. 2005;48:172–9.

    Article  CAS  PubMed  Google Scholar 

  16. Elam M, McKenzie D, Macefield V. Mechanisms of sympathoexcitation: single-unit analysis of muscle vasoconstrictor neurons in awake OSAS subjects. J Appl Physiol. 2002;93:297–303.

    Article  PubMed  Google Scholar 

  17. Lambert E, Hotchkin E, Alvarenga M, Pier C, Richards J, Barton D, et al. Single-unit analysis of sympathetic nervous discharges in patients with panic disorder. J Physiol. 2006;570:637–43.

    Article  CAS  PubMed  Google Scholar 

  18. Graham LN, Smith PA, Huggett RJ, Stoker JB, Mackintosh AF, Mary DA. Sympathetic drive in anterior and inferior uncomplicated acute myocardial infarction. Circulation. 2004;109:2285–9.

    Article  PubMed  Google Scholar 

  19. Murai H, Takamura M, Maruyama M, Nakano M, Ikeda T, Kobayashi D, et al. Altered firing pattern of single-unit muscle sympathetic nerve activity during handgrip exercise in chronic heart failure. J Physiol. 2009;587:2613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  21. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. 1990;82:1724–9.

    Article  CAS  PubMed  Google Scholar 

  22. Grassi G, Seravalle G, Bertinieri G, Stella ML, Turri C, Mancia G. Sympathetic response to ventricular extrasystolic beats in hypertension and heart failure. Hypertension. 2002;39:886–91.

    Article  CAS  PubMed  Google Scholar 

  23. Barretto AC, Santos AC, Munhoz R, Rondon MU, Franco FG, Trombetta IC, et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol. 2009;135:302–7.

    Article  PubMed  Google Scholar 

  24. Bohm M, Flesch M, Schnabel P. Beta-adrenergic signal transduction in the failing and hypertrophied myocardium. J Mol Med (Berl). 1997;75:842–8.

    Article  CAS  Google Scholar 

  25. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation. 1998;98:1329–34.

    Article  CAS  PubMed  Google Scholar 

  26. Chaudhri B, Del Monte F, Hajjar RJ, Harding SE. Interaction between increased SERCA2a activity and beta -adrenoceptor stimulation in adult rabbit myocytes. Am J Physiol Heart Circ Physiol. 2002;283:H2450–7.

    Article  CAS  PubMed  Google Scholar 

  27. Mark AL, Victor RG, Nerhed C, Wallin BG. Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans. Circ Res. 1985;57:461–9.

    Article  CAS  PubMed  Google Scholar 

  28. Notarius CF, Atchison DJ, Floras JS. Impact of heart failure and exercise capacity on sympathetic response to handgrip exercise. Am J Physiol Heart Circ Physiol. 2001;280:H969–76.

    CAS  PubMed  Google Scholar 

  29. Sterns DA, Ettinger SM, Gray KS, Whisler SK, Mosher TJ, Smith MB, et al. Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure. Circulation. 1991;84:2034–9.

    Article  CAS  PubMed  Google Scholar 

  30. Negrao CE, Rondon MU, Tinucci T, Alves MJ, Roveda F, Braga AM, et al. Abnormal neurovascular control during exercise is linked to heart failure severity. Am J Physiol Heart Circ Physiol. 2001;280:H1286–92.

    CAS  PubMed  Google Scholar 

  31. Braunwald E. Shattuck lecture-cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med. 1997;337:1360–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ando S, Dajani HR, Senn BL, Newton GE, Floras JS. Sympathetic alternans. Evidence for arterial baroreflex control of muscle sympathetic nerve activity in congestive heart failure. Circulation. 1997;95:316–9.

    Article  CAS  PubMed  Google Scholar 

  33. Grassi G, Seravalle G, Bertinieri G, Mancia G. Behaviour of the adrenergic cardiovascular drive in atrial fibrillation and cardiac arrhythmias. Acta Physiol Scand. 2003;177:399–404.

    Article  CAS  PubMed  Google Scholar 

  34. Wasmund SL, Li JM, Page RL, Joglar JA, Kowal RC, Smith ML, et al. Effect of atrial fibrillation and an irregular ventricular response on sympathetic nerve activity in human subjects. Circulation. 2003;107:2011–5.

    Article  PubMed  Google Scholar 

  35. Welch WJ, Smith ML, Rea RF, Bauernfeind RA, Eckberg DL. Enhancement of sympathetic nerve activity by single premature ventricular beats in humans. J Am Coll Cardiol. 1989;13:69–75.

    Article  CAS  PubMed  Google Scholar 

  36. Smith ML, Ellenbogen KA, Eckberg DL. Baseline arterial pressure affects sympathoexcitatory responses to ventricular premature beats. Am J Physiol. 1995;269:H153–9.

    CAS  PubMed  Google Scholar 

  37. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.

    Article  CAS  PubMed  Google Scholar 

  38. Elam M, Macefield V. Multiple firing of single muscle vasoconstrictor neurons during cardiac dysrhythmias in human heart failure. J Appl Physiol. 2001;91:717–24.

    CAS  PubMed  Google Scholar 

  39. Baman TS, Lange DC, Ilg KJ, Gupta SK, Liu TY, Alguire C, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm. 2010;7:865–9.

    Article  PubMed  Google Scholar 

  40. Taieb JM, Maury P, Shah D, Duparc A, Galinier M, Delay M, et al. Reversal of dilated cardiomyopathy by the elimination of frequent left or right premature ventricular contractions. J Interv Card Electrophysiol. 2007;20:9–13.

    Article  PubMed  Google Scholar 

  41. Ikeda T, Murai H, Kaneko S, Usui S, Kobayashi D, Nakano M, et al. Augmented single-unit muscle sympathetic nerve activity in heart failure with chronic atrial fibrillation. J Physiol. 2012;590:509–18.

    Article  CAS  PubMed  Google Scholar 

  42. Ehrlich JR, Nattel S, Hohnloser SH. Atrial fibrillation and congestive heart failure: specific considerations at the intersection of two common and important cardiac disease sets. J Cardiovasc Electrophysiol. 2002;13:399–405.

    Article  PubMed  Google Scholar 

  43. Azevedo ER, Newton GE, Floras JS, Parker JD. Reducing cardiac filling pressure lowers norepinephrine spillover in patients with chronic heart failure. Circulation. 2000;101:2053–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayoshi Murai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Murai, H., Kaneko, S., Takamura, M. (2017). Single Fiber Analysis of Muscle Sympathetic Nerve Activity. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56012-8_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56010-4

  • Online ISBN: 978-4-431-56012-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics