Skip to main content

Immunotherapeutic Approaches Against Amyloid-β in Drug Discovery for Alzheimer’s Disease

  • Chapter
  • 1848 Accesses

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia. The major pathological hallmark and culprit of AD is aggregation of the amyloid-β (Aβ) peptide. Since the Aβ abnormality begins in the asymptomatic stage of AD, immunotherapeutic approaches clearing Aβ aggregates are investigated as the most promising treatment in clinical trials. Both active and passive immunization against Aβ showed significant reduction of Aβ levels in the brain and enhancement of learning and memory. Albeit pathologically effective, these immunotherapeutic vaccines need to overcome side effects such as vasogenic edema and microhemorrhages. In this chapter, we introduce the basic concept of immunotherapy for clearance of Aβ, compare putative immunotherapeutic vaccine candidates, and discuss their benefits, disadvantages, and challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, Lohmann S, Piorkowska K, Gafner V, Atwal JK, Maloney J, Chen M, Gogineni A, Weimer RM, Mortensen DL, Friesenhahn M, Ho C, Paul R, Pfeifer A, Muhs A, Watts RJ (2012) An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci 32(28):9677–9689

    Article  CAS  PubMed  Google Scholar 

  • Aisen PS, Vellas B (2013) Passive immunotherapy for Alzheimer’s disease: what have we learned, and where are we headed? J Nutr Health Aging 17(1):49–50

    Article  CAS  PubMed  Google Scholar 

  • Alves RP, Yang MJ, Batista MT, Ferreira LC (2014) Alzheimer’s disease: is a vaccine possible? Braz J Med Biol Res 47(6):438–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alzheimer’s A (2012) Alzheimer’s disease facts and figures. Alzheimers Dement 8(2):131–168

    Article  Google Scholar 

  • Araki S (2010) Current status of Alzheimer’s disease immunotherapy and pharmacologic effect of BAN2401. Nihon Yakurigaku Zasshi 136(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Backman L, Jones S, Berger AK, Laukka EJ, Small BJ (2004) Multiple cognitive deficits during the transition to Alzheimer’s disease. J Intern Med 256(3):195–204

    Article  CAS  PubMed  Google Scholar 

  • Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, Schenk D, Hyman BT (2001) Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 7(3):369–372

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE (2002) Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer’s disease. Peptides 23(12):2223–2226

    Article  CAS  PubMed  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919

    Article  CAS  PubMed  Google Scholar 

  • Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, Guido T, Hoenow K, Hu K, Johnson-Wood K, Khan K, Kholodenko D, Lee C, Lee M, Motter R, Nguyen M, Reed A, Schenk D, Tang P, Vasquez N, Seubert P, Yednock T (2003) Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci U S A 100(4):2023–2028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barten DM, Meredith JE Jr, Zaczek R, Houston JG, Albright CF (2006) Gamma-secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs R D 7(2):87–97

    Article  CAS  PubMed  Google Scholar 

  • Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 64(1):94–101

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, Grundman M, Liu E, A. A. B. Investigators (2012) Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol 69(8):1002–1010

    Article  PubMed  Google Scholar 

  • Boado RJ, Lu JZ, Hui EK, Sumbria RK, Pardridge WM (2013) Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnol Bioeng 110(5):1456–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, Messer J, Oroszlan K, Rauchenberger R, Richter WF, Rothe C, Urban M, Bardroff M, Winter M, Nordstedt C, Loetscher H (2012) Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J Alzheimers Dis 28(1):49–69

    CAS  PubMed  Google Scholar 

  • Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31:175–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  • Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113(16):3716–3725

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 124(5):307–321

    Article  CAS  PubMed  Google Scholar 

  • Chang KA, Suh YH (2010) Possible roles of amyloid intracellular domain of amyloid precursor protein. BMB Rep 43(10):656–663

    Article  CAS  PubMed  Google Scholar 

  • Das P, Murphy MP, Younkin LH, Younkin SG, Golde TE (2001) Reduced effectiveness of Abeta1-42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol Aging 22(5):721–727

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deane R, Yan SD, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7):907–913

    Article  CAS  PubMed  Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, Wu Z, Holtzman DM, Zlokovic BV (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci 25(50):11495–11503

    Article  CAS  PubMed  Google Scholar 

  • Delrieu J, Ousset PJ, Caillaud C, Vellas B (2012a) ‘Clinical trials in Alzheimer’s disease’: immunotherapy approaches. J Neurochem 120(Suppl 1):186–193

    Article  CAS  PubMed  Google Scholar 

  • Delrieu J, Ousset PJ, Vellas B (2012b) Gantenerumab for the treatment of Alzheimer’s disease. Expert Opin Biol Ther 12(8):1077–1086

    Article  CAS  PubMed  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98(15):8850–8855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5(5):452–457

    CAS  PubMed  Google Scholar 

  • Dodel R, Hampel H, Depboylu C, Lin S, Gao F, Schock S, Jackel S, Wei X, Buerger K, Hoft C, Hemmer B, Moller HJ, Farlow M, Oertel WH, Sommer N, Du Y (2002) Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 52(2):253–256

    Article  CAS  PubMed  Google Scholar 

  • Dodel RC, Du Y, Depboylu C, Hampel H, Frolich L, Haag A, Hemmeter U, Paulsen S, Teipel SJ, Brettschneider S, Spottke A, Nolker C, Moller HJ, Wei X, Farlow M, Sommer N, Oertel WH (2004) Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75(10):1472–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doody RS, Farlow M, Aisen PS, A. Alzheimer’s Disease Cooperative Study Data, C. Publication (2014a) Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N Engl J Med 370(15):1460

    CAS  PubMed  Google Scholar 

  • Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R, C. Alzheimer’s Disease Cooperative Study Steering, G. Solanezumab Study (2014b) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321

    Article  CAS  PubMed  Google Scholar 

  • Doraiswamy PM, Xiong GL (2006) Pharmacological strategies for the prevention of Alzheimer’s disease. Expert Opin Pharmacother 7(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Duran-Aniotz C, Morales R, Moreno-Gonzalez I, Hu PP, Soto C (2013) Brains from non-Alzheimer’s individuals containing amyloid deposits accelerate Abeta deposition in vivo. Acta Neuropathol Commun 1(1):76

    Article  PubMed Central  PubMed  Google Scholar 

  • Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29(5):258–289

    Article  CAS  PubMed  Google Scholar 

  • Englund H, Sehlin D, Johansson AS, Nilsson LN, Gellerfors P, Paulie S, Lannfelt L, Pettersson FE (2007) Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J Neurochem 103(1):334–345

    CAS  PubMed  Google Scholar 

  • Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, Friedrich S, Dean RA, Gonzales C, Sethuraman G, DeMattos RB, Mohs R, Paul SM, Siemers ER (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8(4):261–271

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I, Boada Rovira M, Sanchez Guerra ML, Rey MJ, Costa-Jussa F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Fillit H, Hess G, Hill J, Bonnet P, Toso C (2009) IV immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology 73(3):180–185

    Article  CAS  PubMed  Google Scholar 

  • Freeman GB, Lin JC, Pons J, Raha NM (2012) 39-week toxicity and toxicokinetic study of ponezumab (PF-04360365) in cynomolgus monkeys with 12-week recovery period. J Alzheimers Dis 28(3):531–541

    CAS  PubMed  Google Scholar 

  • Frenkel D, Katz O, Solomon B (2000) Immunization against Alzheimer’s beta -amyloid plaques via EFRH phage administration. Proc Natl Acad Sci U S A 97(21):11455–11459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F, Orgogozo JM, Team ANS (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64(9):1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L (2013) Gamma-secretase inhibitors and modulators. Biochim Biophys Acta 1828(12):2898–2907

    Article  CAS  PubMed  Google Scholar 

  • Gowing E, Roher AE, Woods AS, Cotter RJ, Chaney M, Little SP, Ball MJ (1994) Chemical characterization of A beta 17-42 peptide, a component of diffuse amyloid deposits of Alzheimer disease. J Biol Chem 269(15):10987–10990

    CAS  PubMed  Google Scholar 

  • Guan X, Zou J, Gu H, Yao Z (2012) Short amyloid-beta immunogens with spacer-enhanced immunogenicity without junctional epitopes for Alzheimer’s disease immunotherapy. Neuroreport 23(15):879–884

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2006) Challenges in neuronal apoptosis. Curr Alzheimer Res 3(4):377–391

    Article  CAS  PubMed  Google Scholar 

  • Jia Q, Deng Y, Qing H (2014) Potential therapeutic strategies for Alzheimer’s disease targeting or beyond beta-amyloid: insights from clinical trials. Biomed Res Int 2014:837157

    PubMed Central  PubMed  Google Scholar 

  • Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108(14):5819–5824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kakimura J, Kitamura Y, Takata K, Umeki M, Suzuki S, Shibagaki K, Taniguchi T, Nomura Y, Gebicke-Haerter PJ, Smith MA, Perry G, Shimohama S (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16(6):601–603

    CAS  PubMed  Google Scholar 

  • Khorassani F, Hilas O (2013) Bapineuzumab, an investigational agent for Alzheimer’s disease. P T 38(2):89–91

    PubMed Central  PubMed  Google Scholar 

  • Kingwell K (2012) Alzheimer disease: amyloid-beta immunotherapy CAD106 passes first safety test in patients with Alzheimer disease. Nat Rev Neurol 8(8):414

    PubMed  Google Scholar 

  • Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312(5):1103–1119

    Article  CAS  PubMed  Google Scholar 

  • Landen JW, Zhao Q, Cohen S, Borrie M, Woodward M, Billing CB Jr, Bales K, Alvey C, McCush F, Yang J, Kupiec JW, Bednar MM (2013) Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin Neuropharmacol 36(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Lannfelt L, Moller C, Basun H, Osswald G, Sehlin D, Satlin A, Logovinsky V, Gellerfors P (2014a) Perspectives on future Alzheimer therapies: amyloid-beta protofibrils – a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther 6(2):16

    Article  PubMed Central  PubMed  Google Scholar 

  • Lannfelt L, Relkin NR, Siemers ER (2014b) Amyloid-ss-directed immunotherapy for Alzheimer’s disease. J Intern Med 275(3):284–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lansbury PT Jr (1997) Structural neurology: are seeds at the root of neuronal degeneration? Neuron 19(6):1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Legleiter J, Czilli DL, Gitter B, DeMattos RB, Holtzman DM, Kowalewski T (2004) Effect of different anti-Abeta antibodies on Abeta fibrillogenesis as assessed by atomic force microscopy. J Mol Biol 335(4):997–1006

    Article  CAS  PubMed  Google Scholar 

  • Lemere CA (2013) Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener 8:36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 6(2):108–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, Desai R, Hancock WW, Weiner HL, Selkoe DJ (2000) Nasal A beta treatment induces anti-A beta antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann N Y Acad Sci 920:328–331

    Article  CAS  PubMed  Google Scholar 

  • Leuner K, Muller WE, Reichert AS (2012) From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer’s disease. Mol Neurobiol 46(1):186–193

    Article  CAS  PubMed  Google Scholar 

  • Levy JB, Pusey CD (2000) Nephrotoxicity of intravenous immunoglobulin. QJM 93(11):751–755

    Article  CAS  PubMed  Google Scholar 

  • Lleo A, Greenberg SM, Growdon JH (2006) Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med 57:513–533

    Article  CAS  PubMed  Google Scholar 

  • Lobello K, Ryan JM, Liu E, Rippon G, Black R (2012) Targeting Beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis 2012:628070

    PubMed Central  PubMed  Google Scholar 

  • Loeffler DA (2013) Intravenous immunoglobulin and Alzheimer’s disease: what now? J Neuroinflammation 10(1):70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lord A, Gumucio A, Englund H, Sehlin D, Sundquist VS, Soderberg L, Moller C, Gellerfors P, Lannfelt L, Pettersson FE, Nilsson LN (2009) An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease. Neurobiol Dis 36(3):425–434

    Article  CAS  PubMed  Google Scholar 

  • Madeo J, Frieri M (2013) Alzheimer’s disease and immunotherapy. Aging Dis 4(4):210–220

    PubMed Central  PubMed  Google Scholar 

  • Maier M, Seabrook TJ, Lazo ND, Jiang L, Das P, Janus C, Lemere CA (2006) Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer’s disease mouse model in the absence of an Abeta-specific cellular immune response. J Neurosci 26(18):4717–4728

    Article  CAS  PubMed  Google Scholar 

  • Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, Seubert P, Games D, Kirby L, Schenk D (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64(1):129–131

    Article  CAS  PubMed  Google Scholar 

  • Mayeux R, Schupf N (2011) Blood-based biomarkers for Alzheimer’s disease: plasma Abeta40 and Abeta42, and genetic variants. Neurobiol Aging 32(Suppl 1):S10–S19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McElhaney JE, Effros RB (2009) Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol 21(4):418–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menendez-Gonzalez M, Perez-Pinera P, Martinez-Rivera M, Muniz AL, Vega JA (2011) Immunotherapy for Alzheimer’s disease: rational basis in ongoing clinical trials. Curr Pharm Des 17(5):508–520

    Article  CAS  PubMed  Google Scholar 

  • Michaelis ML (2003) Drugs targeting Alzheimer’s disease: some things old and some things new. J Pharmacol Exp Ther 304(3):897–904

    Article  CAS  PubMed  Google Scholar 

  • Moreth J, Mavoungou C, Schindowski K (2013) Passive anti-amyloid immunotherapy in Alzheimer’s disease: what are the most promising targets? Immun Ageing 10(1):18

    Article  PubMed Central  PubMed  Google Scholar 

  • Muhs A, Hickman DT, Pihlgren M, Chuard N, Giriens V, Meerschman C, van der Auwera I, van Leuven F, Sugawara M, Weingertner MC, Bechinger B, Greferath R, Kolonko N, Nagel-Steger L, Riesner D, Brady RO, Pfeifer A, Nicolau C (2007) Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S A 104(23):9810–9815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9(4):448–452

    Article  CAS  PubMed  Google Scholar 

  • Novakovic D, Feligioni M, Scaccianoce S, Caruso A, Piccinin S, Schepisi C, Errico F, Mercuri NB, Nicoletti F, Nistico R (2013) Profile of gantenerumab and its potential in the treatment of Alzheimer’s disease. Drug Des Devel Ther 7:1359–1364

    PubMed Central  PubMed  Google Scholar 

  • O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okura Y, Matsumoto Y (2009) Recent advance in immunotherapies for Alzheimer disease: with special reference to DNA vaccination. Hum Vaccin 5(6):373–380

    Article  CAS  PubMed  Google Scholar 

  • Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, Klunk WE, Ashford E, Yoo K, Xu ZX, Loetscher H, Santarelli L (2012) Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 69(2):198–207

    Article  PubMed  Google Scholar 

  • Panza F, Frisardi V, Imbimbo BP, D’Onofrio G, Pietrarossa G, Seripa D, Pilotto A, Solfrizzi V (2010) Bapineuzumab: anti-beta-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy 2(6):767–782

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, Mathews PM, Jucker M (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298(5597):1379

    Article  CAS  PubMed  Google Scholar 

  • Pietri M, Dakowski C, Hannaoui S, Alleaume-Butaux A, Hernandez-Rapp J, Ragagnin A, Mouillet-Richard S, Haik S, Bailly Y, Peyrin JM, Launay JM, Kellermann O, Schneider B (2013) PDK1 decreases TACE-mediated alpha-secretase activity and promotes disease progression in prion and Alzheimer’s diseases. Nat Med 19(9):1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C, Jungbauer L, LaDu M, Busciglio J, Brady S (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci U S A 106(14):5907–5912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poduslo JF, Gilles EJ, Ramakrishnan M, Howell KG, Wengenack TM, Curran GL, Kandimalla KK (2010) HH domain of Alzheimer’s disease Abeta provides structural basis for neuronal binding in PC12 and mouse cortical/hippocampal neurons. PLoS One 5(1):e8813

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pohanka M (2011) Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155(3):219–229

    Article  CAS  PubMed  Google Scholar 

  • Prins ND, Scheltens P (2013) Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. Alzheimers Res Ther 5(6):56

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 25(3):629–636

    Article  CAS  PubMed  Google Scholar 

  • Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, Younkin S, Younkin L, Schiff R, Weksler ME (2009) 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 30(11):1728–1736

    Article  CAS  PubMed  Google Scholar 

  • Robinson SR, Bishop GM, Lee HG, Munch G (2004) Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging 25(5):609–615

    Article  CAS  PubMed  Google Scholar 

  • Ryan JM, Grundman M (2009) Anti-amyloid-beta immunotherapy in Alzheimer’s disease: ACC-001 clinical trials are ongoing. J Alzheimers Dis 17(2):243

    PubMed  Google Scholar 

  • Savage JM, Wu G, McCampbell A, Wessner RK, Citron M, Liang X, Hsieh S, Kinney G, Wolfe AL, Rosen BL, Renger JJ (2010) A novel multivalent Aβ peptide vaccine with preclinical evidence of a central immune response that generates antisera recognizing a wide range of abeta peptide species [abstract]. Alzheimers Dement 6:S142

    Article  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger A, Mandler M, Otawa O, Zauner W, Mattner F, Schmidt W (2009) Development of AFFITOPE vaccines for Alzheimer’s disease (AD) – from concept to clinical testing. J Nutr Health Aging 13(3):264–267

    Article  CAS  PubMed  Google Scholar 

  • Sehlin D, Englund H, Simu B, Karlsson M, Ingelsson M, Nikolajeff F, Lannfelt L, Pettersson FE (2012) Large aggregates are the major soluble Abeta species in AD brain fractionated with density gradient ultracentrifugation. PLoS One 7(2), e32014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875

    Article  CAS  PubMed  Google Scholar 

  • Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai XD, McKay DM, Tintner R, Frangione B et al (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258(5079):126–129

    Article  CAS  PubMed  Google Scholar 

  • Siemers ER, Friedrich S, Dean RA, Gonzales CR, Farlow MR, Paul SM, Demattos RB (2010) Safety and changes in plasma and cerebrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharmacol 33(2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Sigurdsson EM, Scholtzova H, Mehta PD, Frangione B, Wisniewski T (2001) Immunization with a nontoxic/nonfibrillar amyloid-beta homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. Am J Pathol 159(2):439–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solomon B, Koppel R, Hanan E, Katzav T (1996) Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci U S A 93(1):452–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci U S A 94(8):4109–4112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spencer B, Masliah E (2014) Immunotherapy for Alzheimer’s disease: past, present and future. Front Aging Neurosci 6:114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Lieberburg I, Arrighi HM, Morris KA, Lu Y, Liu E, Gregg KM, Brashear HR, Kinney GG, Black R, Grundman M (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11(3):241–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takano K, Endo S, Mukaiyama A, Chon H, Matsumura H, Koga Y, Kanaya S (2006) Structure of amyloid beta fragments in aqueous environments. FEBS J 273(1):150–158

    Article  CAS  PubMed  Google Scholar 

  • Tucker S, Moller C, Tegerstedt K, Lord A, Laudon H, Sjodahl J, Soderberg L, Spens E, Sahlin C, Waara ER, Satlin A, Gellerfors P, Osswald G, Lannfelt L (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43(2):575–588

    CAS  PubMed  Google Scholar 

  • van der Zee JS, van Swieten P, Aalberse RC (1986) Inhibition of complement activation by IgG4 antibodies. Clin Exp Immunol 64(2):415–422

    PubMed Central  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    Article  CAS  PubMed  Google Scholar 

  • Weiner HL, Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, Issazadeh S, Hancock WW, Selkoe DJ (2000) Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 48(4):567–579

    Article  CAS  PubMed  Google Scholar 

  • Wiessner C, Wiederhold KH, Tissot AC, Frey P, Danner S, Jacobson LH, Jennings GT, Luond R, Ortmann R, Reichwald J, Zurini M, Mir A, Bachmann MF, Staufenbiel M (2011) The second-generation active Abeta immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 31(25):9323–9331

    Article  CAS  PubMed  Google Scholar 

  • Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D (2004) Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 15(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M, Orgogozo JM, Graf A (2012) Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604

    Article  CAS  PubMed  Google Scholar 

  • Winblad B, Graf A, Riviere ME, Andreasen N, Ryan JM (2014) Active immunotherapy options for Alzheimer’s disease. Alzheimers Res Ther 6(1):7

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolfe MS (2006) Shutting down Alzheimer’s. Sci Am 294(5):72–79

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12(9):1005–1015

    CAS  PubMed  Google Scholar 

  • Zhang H, Ma Q, Zhang YW, Xu H (2012) Proteolytic processing of Alzheimer’s beta-amyloid precursor protein. J Neurochem 120(Suppl 1):9–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YoungSoo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yang, SH., Kim, J., Kim, Y. (2015). Immunotherapeutic Approaches Against Amyloid-β in Drug Discovery for Alzheimer’s Disease. In: Mori, N., Mook-Jung, I. (eds) Aging Mechanisms. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55763-0_22

Download citation

Publish with us

Policies and ethics