Skip to main content

Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

  • Chapter
Anionic Polymerization

Abstract

Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding N-carboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G (2009) Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem Rev 109:5528–5578

    Article  CAS  Google Scholar 

  2. Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784

    Article  CAS  Google Scholar 

  3. Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32:858–875

    Article  CAS  Google Scholar 

  4. Deng C, Wu J, Cheng R, Meng F, Klok HA, Zhong Z (2013) Functional polypeptide and hybrid materials: precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog Polym Sci 39:330–364

    Article  Google Scholar 

  5. Huang J, Heise A (2013) Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem Soc Rev 42:7373–7390

    Article  CAS  Google Scholar 

  6. Ray JG, Johnson AJ, Savin DA (2013) Self-assembly and responsiveness of polypeptide-based block copolymers: how “smart” behavior and topological complexity yield unique assembly in aqueous media. J Polym Sci Part B Polym Phys 51:508–523

    Article  CAS  Google Scholar 

  7. Luxenhofer R, Fetsch C, Grossmann A (2013) Polypeptoids: a perfect match for molecular definition and macromolecular engineering? J Polym Sci Part B Polym Phys 51:2731–2752

    Article  CAS  Google Scholar 

  8. Poché DS, Moore MJ, Bowles JL (1999) An unconventional method for purifying the N-carboxyanhydride derivatives of γ-alkyl-L-glutamates. Synth Commun 29:843–854

    Article  Google Scholar 

  9. Gibson MI, Cameron NR (2009) Experimentally facile controlled polymerization of N-carboxyanhydrides (NCAs), including O-benzyl-L-threonine NCA. J Polym Sci Part A Polym Chem 47:2882–2891

    Article  CAS  Google Scholar 

  10. Kramer JR, Deming TJ (2010) General method for purification of α-amino acid-N-carboxyanhydrides using flash chromatography. Biomacromolecules 11:3668–3672

    Article  CAS  Google Scholar 

  11. Aliferis T, Iatrou H, Hadjichristidis N (2004) Living polypeptides. Biomacromolecules 5:1653–1656

    Article  CAS  Google Scholar 

  12. Gkikas M, Iatrou H, Thomaidis NS, Alexandridis P, Hadjichristidis N (2011) Well-defined homopolypeptides, copolypeptides, and hybrids of poly(L-proline). Biomacromolecules 12:2396–2406

    Article  CAS  Google Scholar 

  13. Peggion E, Terbjevich M, Cosani A, Colombini C (1966) Mechanism of N-carboxyanhydride (NCA) polymerization in dioxane. Initiation by carbon-14-labeled amines. J Am Chem Soc 88:3630–3632

    Article  CAS  Google Scholar 

  14. Goodman M, Hutchison J (1966) The mechanisms of polymerization of N-unsubstituted N-carboxyanhydrides. J Am Chem Soc 88:3627–3630

    Article  CAS  Google Scholar 

  15. Ballard DGH, Bamford CH (1956) Reactions of N-carboxy-α-amino-acid anhydrides catalysed by tertiary bases. J Chem Soc 9:381–387

    Article  Google Scholar 

  16. Dimitrov I, Schlaad H (2003) Synthesis of nearly monodisperse polystyrene–polypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem Commun 23:2944–2945

    Article  Google Scholar 

  17. Conejos-Sanchez I, Duro-Castano A, Birke A, Barz M, Vicent MJ (2013) A controlled and versatile NCA polymerization method for the synthesis of polypeptides. Polym Chem 4:3182–3186

    Article  CAS  Google Scholar 

  18. Lu H, Cheng J (2007) Hexamethyldisilazane-mediated controlled polymerization of α-amino acid N-carboxyanhydrides. J Am Chem Soc 129:14114–14115

    Article  CAS  Google Scholar 

  19. Lu H, Cheng J (2008) N-trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides. J Am Chem Soc 130:12562–12563

    Article  CAS  Google Scholar 

  20. Deming TJ (1997) Facile synthesis of block copolypeptides of defined architecture. Nature 390:386–389

    Article  CAS  Google Scholar 

  21. Deming TJ (1998) Amino acid derived nickelacycles: intermediates in nickel-mediated polypeptide synthesis. J Am Chem Soc 120:4240–4241

    Article  CAS  Google Scholar 

  22. Deming TJ (1999) Cobalt and iron initiators for the controlled polymerization of α-amino acid-N-carboxyanhydrides. Macromolecules 32:4500–4502

    Article  CAS  Google Scholar 

  23. Deming TJ, Curtin SA (2000) Chain initiation efficiency in cobalt- and nickel-mediated polypeptide synthesis. J Am Chem Soc 122:5710–5717

    Article  CAS  Google Scholar 

  24. Peng YL, Lai SL, Lin CC (2008) Preparation of polypeptide via living polymerization of Z-Lys-NCA initiated by platinum complexes. Macromolecules 41:3455–3459

    Article  CAS  Google Scholar 

  25. Guo L, Zhang D (2009) Cyclic poly(α-peptoid)s and their block copolymers from N-heterocyclic carbene-mediated ring-opening polymerizations of N-substituted N-Carboxylanhydrides. J Am Chem Soc 131:18072–18074

    Article  CAS  Google Scholar 

  26. Guo L, Lahasky SH, Ghale K, Zhang D (2012) N-heterocyclic carbene-mediated zwitterionic polymerization of N-substituted N-carboxyanhydrides toward poly(α-peptoid)s: kinetic, mechanism, and architectural control. J Am Chem Soc 134:9163–9171

    Article  CAS  Google Scholar 

  27. Engler AC, Lee H, Hammond PT (2009) Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angew Chem Int Ed 48:9334–9338

    Article  CAS  Google Scholar 

  28. Rhodes AJ, Deming TJ (2013) Soluble, clickable polypeptides from azide-containing N-carboxyanhydride monomers. ACS Macro Lett 2:351–354

    Article  CAS  Google Scholar 

  29. Oelker AM, Morey SM, Griffith LG, Hammond PT (2012) Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability. Soft Matter 8:10887–10895

    Article  CAS  Google Scholar 

  30. Pati D, Shaikh AY, Das S, Nareddy PK, Swamy MJ, Hotha S, Gupta SS (2012) Controlled synthesis of O-glycopolypeptide polymers and their molecular recognition by lectins. Biomacromolecules 13:1287–1295

    Article  CAS  Google Scholar 

  31. Pati D, Kalva N, Das S, Kumaraswamy G, Gupta SS, Ambade AV (2012) Multiple topologies from glycopolypeptide–dendron conjugate self-assembly: nanorods, micelles, and organogels. J Am Chem Soc 134:7796–7802

    Article  CAS  Google Scholar 

  32. Das S, Kar M, Sen Gupta S (2013) Synthesis of end-functionalized phosphate and phosphonate-polypeptides by ring-opening polymerization of their corresponding N-carboxyanhydride. Polym Chem 4:4087–4091

    Article  CAS  Google Scholar 

  33. Zhou C, Qi X, Li P, Ning Chen W, Mouad L, Chang MW, Su Jan Leong S, Chan-Park MB (2010) High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromolecules 11:60–67

    Article  CAS  Google Scholar 

  34. Mondeshki M, Spiess HW, Aliferis T, Iatrou H, Hadjichristidis N, Floudas G (2011) Hierarchical self-assembly in diblock copolypeptides of poly(γ-benzyl-L-glutamate) with poly poly(L-leucine) and poly(O-benzyl-L-tyrosine). Eur Polym J 47:668–674

    Article  CAS  Google Scholar 

  35. Gitsas A, Floudas G, Mondeshki M, Spiess HW, Aliferis T, Iatrou H, Hadjichristidis N (2008) Control of peptide secondary structure and dynamics in poly(γ-benzyl-L-glutamate)-b-polyalanine peptides. Macromolecules 41:8072–8080

    Article  CAS  Google Scholar 

  36. Lee CU, Smart TP, Guo L, Epps TH, Zhang D (2011) Synthesis and characterization of amphiphilic cyclic diblock copolypeptoids from N-heterocyclic carbene-nediated zwitterionic polymerization of N-substituted N-carboxyanhydride. Macromolecules 44:9574–9585

    Article  CAS  Google Scholar 

  37. Guo L, Li J, Brown Z, Ghale K, Zhang D (2011) Synthesis and characterization of cyclic and linear helical poly(α-peptoid)s by N-heterocyclic carbene-mediated ring-opening polymerizations of N-substituted N-carboxyanhydrides. Biopolymers 96:596–603

    Article  CAS  Google Scholar 

  38. Aliferis T, Iatrou H, Hadjichristidis N (2005) Well-defined linear multiblock and branched polypeptides by linking chemistry. J Polym Sci Part A Polym Chem 43:4670–4673

    Article  CAS  Google Scholar 

  39. Gitsas A, Floudas G, Mondeshki M, Butt HJ, Spiess HW, Iatrou H, Hadjichristidis N (2008) Effect of chain topology on the self-organization and dynamics of block copolypeptides: from diblock copolymers to stars. Biomacromolecules 9:1959–1966

    Article  CAS  Google Scholar 

  40. Rao J, Zhang Y, Zhang J, Liu S (2008) Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry. Biomacromolecules 9:2586–2593

    Article  CAS  Google Scholar 

  41. Byrne M, Thornton PD, Cryan SA, Heise A (2012) Star polypeptides by NCA polymerisation from dendritic initiators: synthesis and enzyme controlled payload release. Polym Chem 3:2825–2831

    Article  CAS  Google Scholar 

  42. Byrne M, Victory D, Hibbitts A, Lanigan M, Heise A, Cryan SA (2013) Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomater Sci 1:1223–1234

    Article  CAS  Google Scholar 

  43. Sulistio A, Blencowe A, Widjaya A, Zhangb X, Qiao G (2012) Development of functional amino acid-based star polymers. Polym Chem 3:224–234

    Article  CAS  Google Scholar 

  44. Pu Y, Zhang L, Zheng H, He B, Gu Z (2014) Synthesis and drug release of star-shaped poly(benzyl L-aspartate)-block-poly(ethylene glycol) copolymers with POSS cores. Macromol Biosci 14:289–297

    Article  CAS  Google Scholar 

  45. Shen J, Chen C, Fu W, Shi L, Li Z (2013) Conformation-specific self-assembly of thermo-responsive poly(ethylene glycol)-b-polypeptide diblock copolymer. Langmuir 29:6271–6278

    Article  CAS  Google Scholar 

  46. Liu DL, Chang X, Dong CM (2013) Reduction- and thermo-sensitive star polypeptide micelles and hydrogels for on-demand drug delivery. Chem Commun 49:1229–1231

    Article  CAS  Google Scholar 

  47. Lee H, Park JB, Chang JY (2011) Synthesis of poly(ethylene glycol)/polypeptide/poly(D, L-lactide) copolymers and their nanoparticles. J Polym Sci Part A Polym Chem 49:2859–2865

    Article  CAS  Google Scholar 

  48. Yin L, Song Z, Hoon Kim K, Zheng N, Tang H, Lu H, Gabrielson N, Cheng J (2013) Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials 34:2340–2349

    Article  CAS  Google Scholar 

  49. Gao H, Hu Z, Guan Q, Liu Y, Zhu F, Wu Q (2013) Synthesis and thermoreversible gelation of coil-helical polyethylene-block-poly(γ-benzyl-L-glutamate) diblock copolymer. Polymer 54:4923–4929

    Article  CAS  Google Scholar 

  50. Jacobs J, Gathergood N, Heise A (2013) Synthesis of polypeptide block copolymer hybrids by the combination of N-carboxyanhydride polymerization and RAFT. Macromol Rapid Commun 34:1325–1329

    Article  CAS  Google Scholar 

  51. Holley AC, Ray JG, Wan W, Savin DA, McCormick CL (2013) Endolytic, pH-responsive HPMA-b-(l-Glu) copolymers synthesized via sequential aqueous RAFT and ring-opening polymerizations. Biomacromolecules 14:3793–3799

    Article  CAS  Google Scholar 

  52. Higashihara T, Faust R (2009) Synthesis of novel ABA triblock and (ABA)n multiblock copolymers comprised of polyisobutylene and poly(γ-benzyl-L-glutamate) segments. React Funct Polym 69:429–434

    Article  CAS  Google Scholar 

  53. Zhai S, Song X, Feng C, Jiang X, Li Y, Lu G, Huang X (2013) Synthesis of α-helix-containing PPEGMEA-g-PBLG, well-defined amphiphilic graft copolymer, by sequential SET-LRP and ROP. Polym Chem 4:4134–4144

    Article  CAS  Google Scholar 

  54. Karatzas A, Iatrou H, Hadjichristidis N, Inoue K, Sugiyama K, Hirao A (2008) Complex macromolecular chimeras. Biomacromolecules 9:2072–2080

    Article  CAS  Google Scholar 

  55. Junnila S, Houbenov N, Hanski S, Iatrou H, Hirao A, Hadjichristidis N, Ikkala O (2010) Hierarchical smectic self-assembly of an ABC miktoarm star terpolymer with a helical polypeptide arm. Macromolecules 43:9071–9076

    Article  CAS  Google Scholar 

  56. Kadokawa J, Setoguchi T, Yamamoto K (2013) Preparation of highly flexible chitin nanofiber-graft-poly(γ-L-glutamic acid) network film. Polym Bull 70:3279–3289

    Article  CAS  Google Scholar 

  57. Harris Wibowo S, Wong EHH, Sulistio A, Guntari SN, Blencowe A, Caruso F, Qiao GG (2013) Assembly of free-standing polypeptide films via the synergistic combination of hyperbranched macroinitiators, the grafting-from approach, and cross-chain termination. Adv Mater 25:4619–4624

    Article  Google Scholar 

  58. Audouin F, Fox M, Larragy R, Clarke P, Huang J, O’Connor B, Heise A (2012) Galactose-functionalized PolyHIPE scaffolds for use in routine three dimensional culture of mammalian hepatocytes. Macromolecules 45:6127–6135

    Article  CAS  Google Scholar 

  59. Gkikas M, Das BP, Tsianou M, Iatrou H, Sakellariou G (2013) Surface initiated ring-opening polymerization of L-proline N-carboxy anhydride from single and multi walled carbon nanotubes. Eur Polym J 49:3095–3103

    Article  CAS  Google Scholar 

  60. Borase T, Ninjbadgar T, Kapetanakis A, Roche S, O’Connor R, Kerskens C, Heise A, Brougham DF (2013) Stable aqueous dispersions of glycopeptide-grafted selectably functionalized magnetic nanoparticles. Angew Chem Int Ed 52:3164–3167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Hadjichristidis .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

AMM:

Activated monomer mechanism

Bipy:

2,2′-bipyridyl

COD:

1,5-cyclooctadiene

Đ M :

Dispersity

DTT:

Dithiothreitol

HMDS:

Hexamethyldisilazane

HIPE:

High internal phase emulsion

LCST:

Lower critical solution temperature

NAM:

Normal amine mechanism

NCA:

N-carboxyanhydrides

NHC:

N-heterocyclic persistent carbenes

P(α-MeS):

Poly(α-methylstyrene)

PAla:

Polyalanine

PBLG:

Poly(γ-benzyl-L-glutamate)

PBLL:

Poly(ε-tert-butyloxycarbonyl-L-lysine)

pDNA:

Plasmid deoxyribonucleic acid

PEO:

Poly(ethylene oxide)

PI:

Polyisoprene

PLEU:

Poly(L-leucine)

PLGA:

Poly(L-glutamic acid)

PLL:

Poly(L-lysine)

POBT:

Poly(O-benzyl-L-tyrosine)

PS:

Polystyrene

PZLL:

Poly(ε-benzyloxycarbonyl-L-lysine)

RAFT:

Reversible addition–fragmentation chain transfer

ROP:

Ring-opening polymerization

SET-LRP:

Single-electron transfer-living radical polymerization

siRNA:

Small interfering ribonucleic acid

SWNT:

Single-wall carbon nanotubes

TMS:

Trimethylsilyl

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Pahovnik, D., Hadjichristidis, N. (2015). Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_6

Download citation

Publish with us

Policies and ethics