Skip to main content

NMR-Spectroscopic Investigation of Cerebral Reanimation After Prolonged Ischemia

  • Conference paper
Mechanisms of Secondary Brain Damage

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 57))

  • 77 Accesses

Abstract

The severity of brain injury following interruption of blood flow depends on a number of ischemic and post-ischemic variables. The most important ischemic variables are the duration of ischemia, the amount of residual blood flow, the type and depth of anesthesia, brain glucose content and temperature. Among the post-ischemic factors the no-reflow phenomenon, edema and a variety of biochemical disturbances are of particular importance. Due to the complex interaction of these factors irreversible brain injury usually occurs after less than 10 min cerebrocirculatory arrest in normothermia. However, the safe ischemia time of the brain can be substantially extended when appropriate therapeutic measures are used to alleviate post-ischemic injury. NMR-spectroscopy is particularly suited for the analysis of this process. Recording of 31P, 1H and 19F spectra allow the continuous non-invasive assessment of such basic parameters as brain energy state, tissue pH, the content of lactate and blood flow (using Freon-23 as an inert tracer). In addition, information is obtained about changes in the content of phosphomonoesters and -diesters, glutamate, glutamine, aspartate and N-acetyl aspartate. These measurements can be combined with in vivo electrophysiological and post-mortem biochemical investigations for the further refinement of functional/metabolic monitoring.

We have used this approach to study the potentials of postischemic resuscitation after one hour complete ischemia of the normothermic cat brain. The following results were obtained:

  1. 1)

    Cerebrocirculatory arrest caused a suppression of EEG within 15 sec, complete depletion of ATP, and phosphocreatine in less than 10 min, a rise of lactate to about 70% of its maximum value during this interval, and a decrease of pH to between 5.31 and 6.70. After longer ischemia times little further changes occurred.

  2. 2)

    Recirculation of the brain after one hour complete ischemia in normothermia resulted in complete recovery of ATP, CrP, lactate and tissue pH in 30%, in partial recovery of the energy metabolism in 53%, and in no recovery in 17% of cats.

  3. 3)

    Recovery did not depend on pH, lactate or residual blood flow during ischemia but it was critically determined by the speed of ATP resynthesis after ischemia. Complete recovery occurred only when ATP and CrP began to reappear within 5 min and, returned to more than 50% within 20 min after the onset of recirculation; recovery was always incomplete when these intervals were longer.

  4. 4)

    The NMR data correlated with invasive measurements in most but not all animals. In particular, dissociations occurred at low pH and low metabolite levels where NMR either underestimated or overestimated the actual tissue values.

We conclude that recovery of brain metabolism after prolonged ischemia is less sensitive to pH than generally assumed but requires fast blood reperfusion and rapid post-ischemic restoration of energy state. The implications for therapeutic interventions and the monitoring of these interventions by NMR will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen K, Busza AL, Crockard HA, Frackowiak RSJ, Gadian DG, Proctor E, Russell RWR, Williams SR (1988) Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energymetabolites, pH and lactate measured with hydrogen clearance and 31P and 1H nuclear. J Cereb Blood Flow Metabol8:816–821

    Article  CAS  Google Scholar 

  2. Andrews BT, Weinstein PR, Keniry M, Pereira B (1987) Sequential in vivo measurement ofcerebral intracellular metabolites with phosphorus-31magnetic resonance spectroscopy during global cerebral ischemiaand reperfusion in rats. Neurosurgery 21: 699–708

    Article  PubMed  CAS  Google Scholar 

  3. Behar K, Rothman DL, Hossmann K-A (1989)NMR-spectroscopic investigation of the recovery of energy andacid-base homeostasisin cat brain after prolonged ischemia. J Cereb Blood Flow Metabol 9: 655–665

    Article  CAS  Google Scholar 

  4. Chopp M, FrinakS, Walton DR, Smith MB, Welch KMA (1987) Intracellular acidosis during andafter cerebral ischemia: in vivo nuclear magnetic resonance study ofhyperglycemia in cats. Stroke 18: 919–923

    Article  PubMed  CAS  Google Scholar 

  5. Dietrich WD,Ginsberg MD,BustoR (1986) Effect of transient cerebral ischemia on metabolic activation of asomatosensory circuit. J Cereb Blood Flow Metabol 6: 405–413

    Article  CAS  Google Scholar 

  6. Gadian DG,Frackowiak RSJ, Crockard HA, Proctor E, Allen K, Williams SR, Ross Russell RW(1987) Acute cerebral ischaemia: concurrent changes in cerebral blood flow,energy metabolites, pH and lactate measured with hydrogen clearance and 31Pand 1H nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metabol 7:199–206

    Article  CAS  Google Scholar 

  7. Hossmann K-A (1979)Cerebral dysfunction related to local and global ischemia of the brain. In: HoffmeisterF, Müller C (eds) (1979)Brain function in old age. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. HossmannK-A(1988) Resuscitation potentials after prolonged global cerebral ischemia incats. Crit Care Med 16: 964–971

    Article  PubMed  CAS  Google Scholar 

  9. Hossmann K-A, Grosse Ophoff B (1986)Recovery of monkey brain after prolonged ischemia. J Cereb Blood Flow Metabol6: 15–21

    Article  CAS  Google Scholar 

  10. Hossmann K-A, Lechtape-GrüterH, Hossmann V (1973) The roleof cerebral blood flow for the recovery of the brain after prolonged ischemia.Z Neurol 204: 281–299

    Article  PubMed  CAS  Google Scholar 

  11. Hossmann K-A, Sakaki S,Kimoto K (1976) Cerebral uptake of glucose and oxygen in the cat brain afterprolonged ischemia. Stroke 7: 301–305

    Article  CAS  Google Scholar 

  12. Hossmann K-A, Schmidt-KastnerR, Grosse Ophoff B (1987)Recovery of integrative central nervous function after one hour globalcerebro-circulatory arrest in normothermic cat. J Neurol Sci 77: 305–320

    Article  PubMed  CAS  Google Scholar 

  13. Naruse S,Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Watari H (1984) In vivo measurementof energy metabolism and the concomitant monitoring of electroencephalogram inexperimental cerebral ischemia. Brain Res 296: 370–372

    Article  PubMed  CAS  Google Scholar 

  14. Prichard JW(1986) NMR-spectroscopy of brain metabolism in vivo. Ann Rev Neurosci 9:61–85

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt-KastnerR, Grosse Ophoff B, Hossmann K-A (1986a)Delayed recovery of CO2 reactivity after one hour’s complete ischemia of catbrain. J Neurol 233: 367–369

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt-KastnerR, Hossmann K-A, Grosse Ophoff B (1986b)Relationship between metabolic recovery and the EEG after prolonged ischemia ofcat brain. Stroke 17: 1164–1169

    Article  PubMed  CAS  Google Scholar 

  17. UekiM, Linn F, HossmannK-A(1988) Functional activation of cerebral blood flow and metabolism before andafter global ischemia of rat brain. J Cereb Blood Flow Metabol 8: 486–494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Hossmann, KA., Behar, K.L., Rothman, D.L. (1993). NMR-Spectroscopic Investigation of Cerebral Reanimation After Prolonged Ischemia. In: Baethmann, A., Kempski, O., Schürer, L. (eds) Mechanisms of Secondary Brain Damage. Acta Neurochirurgica, vol 57. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9266-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9266-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9268-9

  • Online ISBN: 978-3-7091-9266-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics