Skip to main content

Converting Orthogonal Polyhedra from Extreme Vertices Model to B-Rep and to Alternating Sum of Volumes

  • Conference paper
Book cover Geometric Modelling

Part of the book series: Computing ((COMPUTING,volume 14))

Abstract

In recent published papers we presented the Extreme Vertices Model (EVM), a concise and complete model for representing orthogonal polyhedra and pseudopolyhedra (OPP). This model exploits the simplicity of its domain by allowing robust and simple algorithms for set-membership classification and Boolean operations that do not need to perform floating-point operations.

Several applications of this model have also been published, including the suitability of OPP as geometric bounds in Constructive Solid Geometry (CSG).

In this paper, we present an algorithm which converts from this model into a B-Rep model. We also develop the application of the Alternating Sum of Volumes decomposition to this particular type of polyhedra by taking advantage of the simplicity of the EVM. Finally we outline our future work, which deals with the suitability of the EVM in the field of digital images processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, A.: Orthogonal polyhedra: study and application. PhD thesis, LSI-Universitat Politècnica de Catalunya, (1998).

    Google Scholar 

  2. Aguilera, A., Ayala, D.: Orthogonal polyhedra as geometric bounds in constructive solid geometry. In: ACM SM’97 (Hoffmann, C., Bronsvort, W., eds.), pp. 56–67. Atlanta, 1997.

    Google Scholar 

  3. Aguilera, A., Ayala, D.: Domain extension for the extreme vertices model (EVM) and set-membership classification. In: CSG’98. Ammerdown (UK), pp. 33–47. Information Geometers Ltd., 1998.

    Google Scholar 

  4. Aguilera, A., Ayala, D.: Solving point and plane vs. orthogonal polyhedra using the extreme vertices model (EVM). In: WSCG’98. The Sixth Int. Conf. in Central Europe on Computer Graphics and Visualization’98 (Skala, V., ed.), pp. 11–18. University of West Bohemia. Plzen (Czech Republic), 1998.

    Google Scholar 

  5. Andújar, C., Ayala, D., Brunet, P.: Validity-preserving simplification of very complex polyhedral solids. In: Virtual Environments’99 (Gervautz, M., Hildebrand, A., Schmalstieg, D., eds.), pp. 110. Wien New York: Springer, 1999.

    Google Scholar 

  6. Andújar, C., Ayala, D., Brunet, P., Joan-Arinyo, R., Solé, J.: Automatic generation of multiresolution boundary representations. Comput. Graphics Forum 15, C87–C96 (1996).

    Article  Google Scholar 

  7. Ayala, D., Andújar, C., Brunet, P.: Automatic simplification of orthogonal polyhedra. In: Modeling, virtual worlds, distributed graphics: proceedings of the international MVD’96 workshop (Fellner, D., ed.), pp. 137–147. Infix, 1995.

    Google Scholar 

  8. Bieri, H.: Computing the Euler characteristic and related additive functionals of digital objects from their bintree representation. Comput. Vision Graphics Image Proc. 40, 115–126 (1987).

    Article  MATH  Google Scholar 

  9. Bieri, H.: Hyperimages - an alternative to the conventional digital images. In: EUROGRAPHICS’90 (Vandoni, C. E., Duce, D. A., eds.), pp. 341–352. Amsterdam: North-Holland, 1990.

    Google Scholar 

  10. Boumez, O., Maler, O., Pouch, A.: Orthogonal polyhedra: representation and computation. In: Hybrid systems: computation and control, pp. 46–60. Berlin Heidelberg New York Tokyo: Springer, 1999 (Lecture Notes in Computer Science 1569)

    Google Scholar 

  11. Dang, T., Maler, O.: Reachability analysis via face lifting. In: Hybrid systems: computation and control (Henzinger, T. A., Sastry, S., eds.), pp. 96–109. Berlin Heidelberg New York Tokyo: Springer, 1998 (Lecture Notes in Computer Science 1386).

    Chapter  Google Scholar 

  12. Hoffmann, C. M.: Geometric and solid modeling. New York: Morgan Kauffmann, 1989.

    Google Scholar 

  13. Juan-Arinyo, R.: On boundary to CSG and extended octrees to CSG conversions. In: Theory and practice of geometric modeling (Strasser, W., ed.), pp. 349–367. Berlin Heidelberg New York Tokyo: Springer, 1989.

    Chapter  Google Scholar 

  14. Juan-Arinyo, R.: Domain extension of isothetic polyhedra with minimal CSG representation. Comput. Graphics Forum 5, 281–293 (1995).

    Article  Google Scholar 

  15. Kim, Y. S.: Recognition of form features using convex decomposition. Comput. Aided Des. 24, 461–476 (1992).

    Article  MATH  Google Scholar 

  16. Kim, Y. S., Wilde, D.: A convergent convex decomposition of polyhedral objects. In: SIAM Conf. Geometric Design, (1989).

    Google Scholar 

  17. Kyprianou, L. K.: Shape classification in computer-aided design. PhD thesis, University of Cambridge, 1980.

    Google Scholar 

  18. Latecki, L.: 3D well-composed pictures. Graph. Models Image Proc. 59, 164–172 (1997).

    Article  Google Scholar 

  19. Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vision Image Understand. 61, 70–83 (1995).

    Article  Google Scholar 

  20. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surfaces construction algorithm. Comput. Graphics 21, 163–169 (1987).

    Article  Google Scholar 

  21. Pratt, M. J.: Towards optimality in automated feature recognition. Computing [Suppl] 10, 253–274 (1995).

    Article  Google Scholar 

  22. Preparata, F. P., Shamos, M. I.: Computational geometry: an introduction. Berlin Heidelberg New York: Springer, 1985.

    Google Scholar 

  23. Requicha, A.: Representations for rigid solids: Theory, methods, and systems. Comput. Surv. ACM 12, 437–464 (1980).

    Google Scholar 

  24. Samet, H.: The design and analysis of spatial data structures. Reading: Addison-Wesley, 1989.

    Google Scholar 

  25. Srihari, S. N.: Representation of three-dimensional digital images. ACM Comput. Surv. 13, 399–424 (1981).

    Article  Google Scholar 

  26. Tang, K., Woo, T.: Algorithmic aspects of alternating sum of volumes. Part 1: Data structure and difference operation. CAD 23, 357–366 (1991).

    MATH  Google Scholar 

  27. Udupa, J. K.. Odhner, D.: Shell rendering. IEEE Comput. Graphics Appl. 13, 58–67 (1993).

    Article  Google Scholar 

  28. Waco, D. L., Kim, Y. S.: Geometric reasoning for machining features using convex decomposition. CAD 26, 477–489 (1994).

    MATH  Google Scholar 

  29. Woo, T.: Feature extraction by volume decomposition. In: CAD/CAM Technology in Mechanical Engineering, (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Aguilera, A., Ayala, D. (2001). Converting Orthogonal Polyhedra from Extreme Vertices Model to B-Rep and to Alternating Sum of Volumes. In: Brunnett, G., Bieri, H., Farin, G. (eds) Geometric Modelling. Computing, vol 14. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6270-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6270-5_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83603-3

  • Online ISBN: 978-3-7091-6270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics