Skip to main content

Carbon Nanotubes

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Carbon nanotubes (GlossaryTerm

CNT

s) are remarkable objects that once looked set to revolutionize the technological landscape in the near future. Since the 1990s and for twenty years thereafter, it was repeatedly claimed that tomorrow's society would be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables, hydrogen-powered vehicles, artificial muscles: these were just a few of the technological marvels that we were told would be made possible by the science of carbon nanotubes.

Of course, this prediction is still some way from becoming reality; most often the possibilities and potential have been evaluated, but actual technological development is facing the unforgiving rule that drives the transfer of a new material or a new device to market: profitability. New materials, even more so for nanomaterials, no matter how wonderful they are, have to be cheap to produce, constant in quality, easy to handle, and nontoxic. Those are the conditions for an industry to accept a change in its production lines to make them nanocompatible. Consider the example of fullerenes – molecules closely related to nanotubes. The anticipation that surrounded these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, two decades later, very few fullerene applications have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution, and so should it be with graphene, another member of the carbon nanoform family which joined the game in 2004, again acknowledged by a Nobel Prize in 2010.

There is no denying, however, that the expectations surrounding carbon nanotubes are still high, because of specificities that make them special compared to fullerenes and graphene: their easiness of production, their dual molecule/nano-object nature, their unique aspect ratio, their robustness, the ability of their electronic structure to be given a gap, and their wide typology etc. Therefore, carbon nanotubes may provide the building blocks for further technological progress, enhancing our standard of living.

In this chapter, we first describe the structures, syntheses, growth mechanisms, and properties of carbon nanotubes. Then we introduce nanotube-based materials, which comprise on the one hand those formed by reactions and associations of all-carbon nanotubes with foreign atoms, molecules and compounds, and on the other hand, composites, obtained by incorporating carbon nanotubes in various matrices. Finally, we will provide a list of applications currently on the market, while skipping the potentially endless and speculative list of possible applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Monthioux, V.L. Kuznetsov: Who should be given the credit for the discovery of carbon nanotubes?, Carbon 44, 1621–1623 (2006)

    Google Scholar 

  2. L.V. Radushkevich, V.M. Lukyanovich: O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn. Fis. Chim. 26, 88–95 (1952)

    Google Scholar 

  3. R.T.K. Baker, P.S. Harris: The formation of filamentous carbon. In: Chemistry and Physics of Carbon, Vol. 14, ed. by P.L. Walker Jr., P.A. Thrower (Marcel Dekker, New York 1978) pp. 83–165

    Google Scholar 

  4. S. Iijima: Helical microtubules of graphite carbon, Nature 354, 56–58 (1991)

    Google Scholar 

  5. S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1 nm diameter, Nature 363, 603–605 (1993)

    Google Scholar 

  6. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Bayers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993)

    Google Scholar 

  7. N. Hamada, S.I. Sawada, A. Oshiyama: New one-dimensional conductors, graphite microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992)

    Google Scholar 

  8. J. Tersoff, R.S. Ruoff: Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994)

    Google Scholar 

  9. N. Wang, Z.K. Tang, G.D. Li, J.S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000)

    Google Scholar 

  10. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995)

    Google Scholar 

  11. R.C. Haddon: Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules, Science 261, 1545–1550 (1993)

    Google Scholar 

  12. M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J. Fisher, D.E. Luzzi: Sensitivity of single-wall nanotubes to chemical processing: An electron microscopy investigation, Carbon 39, 1261–1272 (2001)

    Google Scholar 

  13. H. Allouche, M. Monthioux: Chemical vapor deposition of pyrolytic carbon onto carbon nanotubes. Part II – Structure and texture, Carbon 43, 1265–1278 (2005)

    Google Scholar 

  14. M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain: Morphology and crystalline order in catalytic carbons, Carbon 19, 217–224 (1981)

    Google Scholar 

  15. N.M. Rodriguez, A. Chambers, R.T. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862–3866 (1995)

    Google Scholar 

  16. M. Monthioux, L. Noé, L. Dussault, J.-C. Dupin, N. Latorre, T. Ubieto, E. Romeo, C. Royo, A. Monzón, C. Guimon: Texturising and structurising mechanisms of carbon nanofilament during growth, J. Mater. Chem. 17, 4611–4618 (2007)

    Google Scholar 

  17. J. Vera-Agullo, H. Varela-Rizo, J.A. Conesa, C. Almansa, C. Merino, I. Martin-Gullon: Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers, Carbon 45, 2751–2758 (2007)

    Google Scholar 

  18. Y. Saito: Nanoparticles and filled nanocapsules, Carbon 33, 979–988 (1995)

    Google Scholar 

  19. P.J.F. Harris: Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  20. M. Monthioux: Introduction to carbon nanotubes. In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 8–39

    Google Scholar 

  21. M. Monthioux, P. Serp, E. Flahaut, M. Razafinimanana, C. Laurent, A. Peigney, W. Bacsa, J.-M. Broto: Introduction to carbon nanotubes. In: Nanotechnology Handbook, 3rd edn., ed. by B. Bhushan (Springer, Berlin, Heidelberg 2010) pp. 47–118

    Google Scholar 

  22. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: Solid C60: A new form of carbon, Nature 347, 354–358 (1990)

    Google Scholar 

  23. L. Fulchieri, Y. Schwob, F. Fabry, G. Flamant, L.F.P. Chibante, D. Laplaze: Fullerene production in a 3-phase AC plasma process, Carbon 38, 797–803 (2000)

    Google Scholar 

  24. K. Saidane, M. Razafinimanana, H. Lange, A. Huczko, M. Baltas, A. Gleizes, J.L. Meunier: Fullerene synthesis in the graphite electrode arc process: local plasma characteristics and correlation with yield, J. Phys. D Appl. Phys. 37, 232–239 (2004)

    Google Scholar 

  25. T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–221 (1992)

    Google Scholar 

  26. D. Ugarte: Morphology and structure of graphitic soot particles generated in arc-discharge C60 production, Chem. Phys. Lett. 198, 596–602 (1992)

    Google Scholar 

  27. T.W. Ebbesen: Carbon nanotubes, Ann. Rev. Mater. Sci. 24, 235–264 (1994)

    Google Scholar 

  28. T. Beltz, J. Find, D. Herein, N. Pfänder, T. Rühle, H. Werner, M. Wohlers, R. Schlögl: On the production of different carbon forms by electric arc graphite evaporation, Ber. Bunsen. Phys. Chem. 101, 712–725 (1997)

    Google Scholar 

  29. C. Bernier, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997)

    Google Scholar 

  30. H. Allouche, M. Monthioux, M. Pacheco, M. Razafinimanana, H. Lange, A. Huczko, T.P. Teulet, A. Gleizes, T. Sogabe: Physical characteristics of the graphite-electrode electric-arc as parameters for the formation of single-wall carbon nanotubes. In: Proc. Eurocarbon, Vol. 2 (Deutsche Keramische Gesellschaft, Cologne 2000) pp. 1053–1054

    Google Scholar 

  31. M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, A. Gleizes: Spectroscopic study of an electric arc with Gd and Fe doped anodes for the carbon nanotube formation. In: Proc. 25th Int. Conf. Phenom. Ioniz. Gases, ed. by E. Goto (Nagoya Univ., Nagoya 2001) pp. 297–298

    Google Scholar 

  32. M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, P. Teulet, A. Gleizes, C. Goze, P. Bernier, T. Sogabe: Influence of doped graphite electrode in electric arc for the formation of single wall carbon nanotubes. In: Proc. 6th Eur. Conf. Therm. Plasma Process. – Prog. Plasma Process. Mater., ed. by P. Fauchais (Begell House, New York 2001) pp. 649–654

    Google Scholar 

  33. M. Pacheco, H. Allouche, M. Monthioux, A. Razafinimanana, A. Gleizes: Correlation between the plasma characteristics and the morphology and structure of the carbon phases synthesised by electric arc discharge. In: Proc. 25th Bienn. Conf. Carbon, Lexington 2001, ed. by F. Derbyshire (2001)

    Google Scholar 

  34. M. Pacheco, M. Monthioux, M. Razafinimanana, L. Donadieu, H. Allouche, N. Caprais, A. Gleizes: New factors controlling the formation of single-wall carbon nanotubes by arc plasma. In: Proc. Carbon 2002 Int. Conf., ed. by H.-M. Cheng (Shanxi Chunqiu Audio-Visual, Beijing 2002)

    Google Scholar 

  35. M. Monthioux, M. Pacheco, H. Allouche, M. Razafinimanana, N. Caprais, L. Donnadieu, A. Gleizes: New data about the formation of SWNTs by the electric arc method. In: Electron. Prop. Mol. Nanostructures AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin, Heidelberg 2002) pp. 182–185

    Google Scholar 

  36. H. Lange, A. Huczko, M. Sioda, M. Pacheco, M. Razafinimanana, A. Gleizes: Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes, Plasma Chem. Plasma Process 22, 523–536 (2002)

    Google Scholar 

  37. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley: Large scale purification of single wall carbon nanotubes: Process, product and characterization, Appl. Phys. A 67, 29–37 (1998)

    Google Scholar 

  38. M. Ishigami, J. Cumings, A. Zettl, S. Chen: A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett. 319, 457–459 (2000)

    Google Scholar 

  39. Y.L. Hsin, K.C. Hwang, F.R. Chen, J.J. Kai: Production and in-situ metal filling of carbon nanotube in water, Adv. Mater. 13, 830–833 (2001)

    Google Scholar 

  40. H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, C.L. Zhu, Y.F. Zhu, D.H. Wu, X.H. Chen: Formation of carbon nanotubes in water by the electric arc technique, Chem. Phys. Lett. 366, 664–669 (2002)

    Google Scholar 

  41. T. Sogabe, T. Masuda, K. Kuroda, Y. Hirohaya, T. Hino, T. Ymashina: Preparation of B4C-mixed graphite by pressureless sintering and its air oxidation behavior, Carbon 33, 1783–1788 (1995)

    Google Scholar 

  42. W.K. Maser, P. Bernier, J.M. Lambert, O. Stephan, P.M. Ajayan, C. Colliex, V. Brotons, J.M. Planeix, B. Coq, P. Molinie, S. Lefrant: Elaboration and characterization of various carbon nanostructures, Synth. Met. 81, 243–250 (1996)

    Google Scholar 

  43. A. Mansour, M. Razafinimanana, M. Monthioux, M. Pacheco, A. Gleizes: A significant improvement of both yield and purity during SWCNT synthesis via the electric arc process, Carbon 45, 1651–1661 (2007)

    Google Scholar 

  44. A. Mansour: Caractérisation expérimentale d’un plasma d’arc électrique en vue du contrôle de la synthèse des nanotubes de carbone monoparois, Ph.D. Thesis (University Paul Sabatier, Toulouse 2007)

    Google Scholar 

  45. J. Gavillet, A. Loiseau, J. Thibault, A. Maigné, O. Stéphan, P. Bernier: TEM study of the influence of the catalyst composition on the formation and growth of SWNT. In: Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin, Heidelberg 2002) pp. 202–206

    Google Scholar 

  46. V. Ramarozatovo, A. Mansour, M. Razafinimanana, M. Monthioux, F. Valensi, L. Noé, M. Masquère: Influence of chamber volume in single wall carbon nanotube synthesis by an electric arc, J. Phys. D: Appl. Phys. 45, 345204 (2012)

    Google Scholar 

  47. G.G. Tibbetts, M. Endo, C.P. Beetz: Carbon fibers grown from the vapor phase: A novel material, SAMPE J. 22, 30 (1989)

    Google Scholar 

  48. R.T.K. Baker: Catalytic growth of carbon filaments, Carbon 27, 315–323 (1989)

    Google Scholar 

  49. E. Lamouroux, P. Serp, P. Kalck: Catalytic chemical vapor deposition routes towards single-walled and double-walled carbon nanotubes, Catal. Rev. Sci. Eng. 49, 341–405 (2007)

    Google Scholar 

  50. R. Philippe, A. Morançais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp: Catalytic production of carbon nanotubes by fluidized-bed CVD, Chem. Vap. Depos. 13, 447–457 (2007)

    Google Scholar 

  51. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite: Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene, J. Catal. 30, 86–95 (1973)

    Google Scholar 

  52. T. Koyama, M. Endo, Y. Oyuma: Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon, Jpn. J. Appl. Phys. 11, 445–449 (1972)

    Google Scholar 

  53. M. Endo, A. Oberlin, T. Koyama: High resolution electron microscopy of graphitizable carbon fiber prepared by benzene decomposition, Jpn. J. Appl. Phys. 16, 1519–1523 (1977)

    Google Scholar 

  54. N.M. Rodriguez: A review of catalytically grown carbon nanofibers, J. Mater. Res. 8, 3233–3250 (1993)

    Google Scholar 

  55. W.R. Davis, R.J. Slawson, G.R. Rigby: An unusual form of carbon, Nature 171, 756 (1953)

    Google Scholar 

  56. H.P. Boehm: Carbon from carbon monoxide disproportionation on nickel and iron catalysts; morphological studies and possible growth mechanisms, Carbon 11, 583–590 (1973)

    Google Scholar 

  57. M. Audier, A. Oberlin, M. Coulon: Crystallographic orientations of catalytic particles in filamentous carbon; case of simple conical particles, J. Cryst. Growth 55, 546–549 (1981)

    Google Scholar 

  58. M. Audier, M. Coulon: Kinetic and microscopic aspects of catalytic carbon growth, Carbon 23, 317–323 (1985)

    Google Scholar 

  59. A. Thaib, G.A. Martin, P. Pinheiro, M.C. Schouler, P. Gadelle: Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over Co/Al2O3 and Co/SiO2 catalysts, Catal. Lett. 63, 135–141 (1999)

    Google Scholar 

  60. P. Pinheiro, M.C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhée: Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts, Carbon 38, 1469–1479 (2000)

    Google Scholar 

  61. C. Laurent, E. Flahaut, A. Peigney, A. Rousset: Metal nanoparticles for the catalytic synthesis of carbon nanotubes, New J. Chem. 22, 1229–1237 (1998)

    Google Scholar 

  62. A. Peigney, C. Laurent, F. Dobigeon, A. Rousset: Carbon nanotubes grown in situ by a novel catalytic method, J. Mater. Res. 12, 613–615 (1997)

    Google Scholar 

  63. D. Kunii, O. Levenspiel: Fluidization Engineering (Butterworth-Heinemann, Boston 1991)

    Google Scholar 

  64. S. Shukrullah, N.M. Mohamed, M.S. Shaharun, M.Y. Naz: Mass production of carbon nanotubes using fluidized bed reactor: A short review, Trends Appl. Sci. Res. 9, 121–131 (2014)

    Google Scholar 

  65. E. Flahaut: Synthèse par voir catalytique et caractérisation de composites nanotubes de carbone-metal-oxyde poudres et matériaux denses, Ph.D. Thesis (Univers. Paul Sabatier, Toulouse 1999)

    Google Scholar 

  66. E. Flahaut, R. Bacsa, A. Peigney, C. Laurent: Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun. (2003) doi:10.1039/B301514A

  67. V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt: The study of nanotubules produced by catalytic method, Chem. Phys. Lett. 223, 329–335 (1994)

    Google Scholar 

  68. V. Ivanov, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X.B. Zhang: Catalytic production and purification of nanotubules having fullerene-scale diameters, Carbon 33, 1727–1738 (1995)

    Google Scholar 

  69. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A. Fudala, A. Lucas: Catalytic synthesis of carbon nanotubes using zeolite support, Zeolites 17, 416–423 (1996)

    Google Scholar 

  70. Y.H. Li, H.Q. Gao, J.H. Yang, W.L. Gao, J. Xiang, Q.Y. Li: Multi-wall carbon nanotubes supported on carbon fiber paper synthesized by simple chemical vapor deposition, Mat. Sci.Eng. B 187, 113–119 (2014)

    Google Scholar 

  71. A. Govindaraj, E. Flahaut, C. Laurent, A. Peigney, A. Rousset, C.N.R. Rao: An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1−xMxAl2O4 spinel catalysts, J. Mater. Res. 14, 2567–2576 (1999)

    Google Scholar 

  72. E. Flahaut, A. Peigney, C. Laurent, A. Rousset: Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes, J. Mater. Chem. 10, 249–252 (2000)

    Google Scholar 

  73. J. Kong, A.M. Cassel, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998)

    Google Scholar 

  74. E. Flahaut, A. Peigney, W.S. Bacsa, R.R. Bacsa, C. Laurent: CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: Influence of the proportions of cobalt and molybdenum, J. Mater. Chem. 14, 646–653 (2004)

    Google Scholar 

  75. E. Flahaut, C. Laurent, A. Peigney: Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon 43, 375–383 (2005)

    Google Scholar 

  76. R. Marangoni, P. Serp, R. Feurrer, Y. Kihn, P. Kalck, C. Vahlas: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalyst and ethylene, Carbon 39, 443–449 (2001)

    Google Scholar 

  77. R. Sen, A. Govindaraj, C.N.R. Rao: Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267, 276–280 (1997)

    Google Scholar 

  78. Y.Y. Fan, H.M. Cheng, Y.L. Wei, G. Su, S.H. Shen: The influence of preparation parameters on the mass production of vapor grown carbon nanofibers, Carbon 38, 789–795 (2000)

    Google Scholar 

  79. L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu: Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39, 329–335 (2001)

    Google Scholar 

  80. F. Toni, H. Xing, J. Walter, V. Strauss, T.J. Nacken, C. Damma, K.E. Wirth, D. Guldi, W. Peukert: Production of well dispersible single walled carbon nanotubes via a floating catalyst-method, Chem. Eng. Sci. 138, 385–395 (2015)

    Google Scholar 

  81. N. Sankararamakrishnan, D. Chauhan, J. Dwivedi: Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior towards arsenic, Chem. Eng. J. 284, 599–608 (2016)

    Google Scholar 

  82. M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier: Synthesis of multi-walled carbon nanotubes and nano-fibres using aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett. 377, 293–298 (2003)

    Google Scholar 

  83. Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, S. Xie: Producing cleaner double-walled carbon nanotubes in a floating catalyst system, Carbon 41, 2607–2611 (2003)

    Google Scholar 

  84. F. Rohmund, L.K.L. Falk, F.E.B. Campbell: A simple method for the production of large arrays of aligned carbon nanotubes, Chem. Phys. Lett. 328, 369–373 (2000)

    Google Scholar 

  85. G.G. Tibbetts, C.A. Bernardo, D.W. Gorkiewicz, R.L. Alig: Role of sulfur in the production of carbon fibers in the vapor phase, Carbon 32, 569–576 (1994)

    Google Scholar 

  86. H. Chen, M. Chen, Y. Zhang, Q. Li: Rational control on floating catalysts for the growth of carbon nanotube assemblies: From vertically aligned carbon nanotube arrays to carbon nanotube films, Appl. Surf. Sci. 353, 651–661 (2015)

    Google Scholar 

  87. W.Q. Han, P. Kholer-Riedlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W.K. Hsu, B.H. Chang, Y.Q. Zhu, H.W. Kroto, M. Terrones, H. Terrones: Aligned CNx nanotubes by pyrolysis of ferrocene under NH3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000)

    Google Scholar 

  88. L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, S. Xie: Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett. 359, 63–67 (2002)

    Google Scholar 

  89. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002)

    Google Scholar 

  90. R.E. Smalley, J.H. Hafner, D.T. Colbert, K. Smith: Catalytic growth of single-wall carbon nanotubes from metal particles, US Patent (Application) 19980601010903 (1998)

    Google Scholar 

  91. P. Nikolaev: Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process, J. Nanosci. Nanotechnol. 4, 307–316 (2004)

    Google Scholar 

  92. T. Kyotani, L.F. Tsai, A. Tomita: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8, 2109–2113 (1996)

    Google Scholar 

  93. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporisation, Chem. Phys. Lett. 243, 49–54 (1995)

    Google Scholar 

  94. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, D.T. Colbert, G. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 487–493 (1996)

    Google Scholar 

  95. M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima: Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal, Chem. Phys. Lett. 278, 102–106 (1997)

    Google Scholar 

  96. T.M. Gruenberger, J. Gonzalez-Aguilar, F. Fabry, L. Fulchieri, E. Grivei, N. Probst, G. Flamant, H. Okuno, J.C. Charlier: Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing, Fuller. Nanotub. Carbon Nanostruct. 12, 571–581 (2004)

    Google Scholar 

  97. M.J. Heben, T.A. Bekkedhal, D.L. Schultz, K.M. Jones, A.C. Dillon, C.J. Curtis, C. Bingham, J.R. Pitts, A. Lewandowski, C.L. Fields: Production of single wall carbon nanotubes using concentrated sunlight. In: Proc. Symp. Recent Adv. Chem. Phys. Fuller. Rel. Mater., ed. by K.M. Kadish, R.S. Ruoff (Electrochemical Society, Pennington 1996) pp. 803–811

    Google Scholar 

  98. D. Laplaze, P. Bernier, C. Journet, G. Vié, G. Flamant, E. Philippot, M. Lebrun: Evaporation of graphite using a solar furnace. In: Proc. 8th Int. Symp. Solar Conc. Technol., Köln, 1996, ed. by M. Becker, M. Balmer (Müller, Heidelberg 1997) pp. 1653–1656

    Google Scholar 

  99. G. Flamant, M. Bijeire, D. Luxembourg: Modelling of a solar reactor for single wall nanotubes synthesis, ASME J. Solar Energ. Eng. 128, 1–124 (2006)

    Google Scholar 

  100. W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris: Condensed-phase nanotubes, Nature 377, 687 (1995)

    Google Scholar 

  101. W.S. Cho, E. Hamada, Y. Kondo, K. Takayanagi: Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett. 69, 278–279 (1996)

    Google Scholar 

  102. Y.L. Li, Y.D. Yu, Y. Liang: A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, J. Mater. Res. 12, 1678–1680 (1997)

    Google Scholar 

  103. M.L. Terranova, S. Piccirillo, V. Sessa, P. Sbornicchia, M. Rossi, S. Botti, D. Manno: Growth of single-walled carbon nanotubes by a novel technique using nanosized graphite as carbon source, Chem. Phys. Lett. 327, 284–290 (2000)

    Google Scholar 

  104. R.L. Vander Wal, T. Ticich, V.E. Curtis: Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett. 323, 217–223 (2000)

    Google Scholar 

  105. I. Gunjishima, T. Inoue, S. Yamamuro, K. Sumiyama, A. Okamoto: Synthesis of vertically aligned, double-walled carbon nanotubes from highly active Fe-V-O nanoparticles, Carbon 45, 1193–1199 (2007)

    Google Scholar 

  106. G. Zhong, T. Iwasaki, J. Robertson, H. Kawarada: Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes, J. Phys. Chem. B 111, 1907–1910 (2007)

    Google Scholar 

  107. H. Cui, G. Eres, J.Y. Howe, A. Puretzki, M. Varela, D.B. Geohegan, D.H. Lowndes: Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition, Chem. Phys. Lett. 374, 222–228 (2003)

    Google Scholar 

  108. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowdens: Effect of film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett. 78, 1394–1396 (2001)

    Google Scholar 

  109. I.T. Han, B.K. Kim, H.J. Kim, M. Yang, Y.W. Jin, S. Jung, N. Lee, S.K. Kim, J.M. Kim: Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400, 139–144 (2004)

    Google Scholar 

  110. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zha, G. Wang: Large scale synthesis of aligned carbon nanotubes, Science 274, 1701–1703 (1996)

    Google Scholar 

  111. F. Zheng, L. Liang, Y. Gao, J.H. Sukamto, L. Aardahl: Carbon nanotubes synthesis using mesoporous silica templates, Nano Lett. 2, 729–732 (2002)

    Google Scholar 

  112. S.H. Jeong, O.-K. Lee, K.H. Lee, S.H. Oh, C.G. Park: Preparation of aligned carbon nanotubes with prescribed dimension: Template synthesis and sonication cutting approach, Chem. Mater. 14, 1859–1862 (2002)

    Google Scholar 

  113. N.S. Kim, Y.T. Lee, J. Park, H. Ryu, H.J. Lee, S.Y. Choi, J. Choo: Dependence of vertically aligned growth of carbon nanotubes on catalyst, J. Phys. Chem. B 106, 9286–9290 (2002)

    Google Scholar 

  114. C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, W.B. Choi, N.S. Lee, G.-S. Park, J.M. Kim: Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett. 312, 461–468 (1999)

    Google Scholar 

  115. W.D. Zhang, Y. Wen, S.M. Liu, W.C. Tjiu, G.Q. Xu, L.M. Gan: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates, Carbon 40, 1981–1989 (2002)

    Google Scholar 

  116. S. Huang, L. Dai, A.W.H. Mau: Controlled fabrication of large scale aligned carbon nanofiber/nanotube patterns by photolithography, Adv. Mater. 14, 1140–1143 (2002)

    Google Scholar 

  117. T. Sun, G. Wang, H. Liu, L. Feng, D. Zhu: Control over the wettability of an aligned carbon nanotube film, J. Am. Chem. Soc. 125, 14996–14997 (2003)

    Google Scholar 

  118. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B 106, 2429–2433 (2002)

    Google Scholar 

  119. Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee, C.J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)

    Google Scholar 

  120. M. Paillet, V. Jourdain, P. Poncharal, J.-L. Sauvajol, A. Zahab, J.C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret: Versatile synthesis of individual single-walled carbon nanotubes from nickel nanoparticles for the study of their physical properties, J. Phys. Chem. B 108, 17112–17118 (2004)

    Google Scholar 

  121. Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst, Thin Solid Films 464/465, 286–289 (2004)

    Google Scholar 

  122. S. Casimirius, E. Flahaut, C. Laurent, C. Vieu, F. Carcenac, C. Laberty-Robert: Optimized microcontact printing process for the patterned growth of individual SWNTs, Microelectron. Eng. 73/74, 564–569 (2004)

    Google Scholar 

  123. Y. Lei, K.S. Yeong, J.T.L. Thong, W.K. Chim: Large-scale ordered carbon nanotubes arrays initiated from highly ordered catalyst arrays on silicon substrates, Chem. Mater. 16, 2757–2761 (2004)

    Google Scholar 

  124. Q. Ye, A.M. Cassel, H. Liu, K.J. Chao, J. Han, M. Meyyappan: Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications, Nano Lett. 4, 1301–1308 (2004)

    Google Scholar 

  125. S. Fan, M. Chapline, N. Franklin, T. Tombler, A.M. Cassel, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)

    Google Scholar 

  126. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumara, S. Iijima: Ware-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362–1364 (2004)

    Google Scholar 

  127. Y. Fu, S. Chen, J. Bielecki, A. Matic, T. Wang, L.-L. Ye, J. Liu: Selective growth of double walled carbon nanotubes on gold films, Mater. Lett. 72, 78–80 (2012)

    Google Scholar 

  128. A.M. Cassel, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai: Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc. 121, 7975–7976 (1999)

    Google Scholar 

  129. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen: Continous production of aligned carbon nanotubes: A step closer to commercial realization, Chem. Phys. Lett. 303, 467–474 (1999)

    Google Scholar 

  130. C.N.R. Rao, R. Sen, B.C. Satishkumar, A. Govindaraj: Large aligned carbon nanotubes bundles from ferrocene pyrolysis, Chem. Commun. (1998) doi:10.1039/A802258E

  131. K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, D.J. Kim: Effects of ammonia on the alignment of carbon nanotubes in metal-assisted chemical vapor deposition, J. Eur. Ceram. Soc. 21, 2095–2098 (2001)

    Google Scholar 

  132. N.S. Kim, Y.T. Lee, J. Park, J.B. Han, Y.S. Choi, S.Y. Choi, J. Choo, G.H. Lee: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines, J. Phys. Chem. B 107, 9249–9255 (2003)

    Google Scholar 

  133. C. Emmeger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach: Synthesis of carbon nanotubes over Fe catalyst on aluminum and suggested growth mechanism, Carbon 41, 539–547 (2003)

    Google Scholar 

  134. Q. Zhang, J. Huang, F. Wei, G. Xu, Y. Wang, W. Qian, D. Wang: Large scale production of carbon nanotubes arrays on the sphere surface from liquefied petroleum gas at low cost, Chin. Sci. Bull. 52, 2896–2902 (2007)

    Google Scholar 

  135. X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, H. Dai: Assembly of densely aligned single-walled carbon nanotubes from bulk materials Langmuir–Blodgett, J. Am. Chem. Soc. 129, 4890–4891 (2007)

    Google Scholar 

  136. M. Kumar, Y. Ando: Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production, J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)

    Google Scholar 

  137. J.-P. Tessonnier, D.S. Su: Recent progress on the growth mechanism of carbon nanotubes: A review, Chem. Sus. Chem. 4, 824–847 (2011)

    Google Scholar 

  138. V. Jourdain, C. Bichara: Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon 58, 2–39 (2013)

    Google Scholar 

  139. M. Endo, H.W. Kroto: Formation of carbon nanofibers, J. Phys. Chem. 96, 6941–6944 (1992)

    Google Scholar 

  140. R.S. Wagner: VLS mechanisms of crystal growth. In: Whisker Technology, ed. by P.A. Levit (Wiley, New York 1970) pp. 47–72

    Google Scholar 

  141. V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, P. Bernier: Sequential catalytic growth of carbon nanotubes, Chem. Phys. Lett. 364, 27–33 (2002)

    Google Scholar 

  142. H. Dai: Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002)

    Google Scholar 

  143. Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, T. Hayashi: Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phys. 33, L526–L529 (1994)

    Google Scholar 

  144. J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Malti, C. Roland, B.J. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998)

    Google Scholar 

  145. F. Larouche, O. Smiljanic, X. Sun, B.L. Stanfield: Solutal Bénard–Marangoni instability as a growth mechanism for single-walled carbon nanotubes, Carbon 43, 986–993 (2005)

    Google Scholar 

  146. K. Méténier, S. Bonnamy, F. Béguin, C. Journet, P. Bernier, L.M. de la Chapelle, O. Chauvet, S. Lefrant: Coalescence of single walled nanotubes and formation of multi-walled carbon nanotubes under high temperature treatments, Carbon 40, 1765–1773 (2002)

    Google Scholar 

  147. P.G. Collins, P. Avouris: Nanotubes for electronics, Sci. Am. 283, 38–45 (2000)

    Google Scholar 

  148. Q.-H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345, 18–24 (2001)

    Google Scholar 

  149. S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko: Capillary condensation of N2 on multiwall carbon nanotubes, J. Phys. Chem. 102, 4689–4692 (1998)

    Google Scholar 

  150. M.E. Birch, T.A. Ruda-Eberenz, M. Chai, R. Andrews, R.L. Hatfield: Properties that influence the specific surface areas of carbon nanotubes and nanofibers, Ann. Occup. Hyg. 57, 1148–1166 (2013)

    Google Scholar 

  151. M. Eswaramoorthy, R. Sen, C.N.R. Rao: A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett. 304, 207–210 (1999)

    Google Scholar 

  152. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39, 507–514 (2001)

    Google Scholar 

  153. K.A. Williams, P.C. Eklund: Monte Carlo simulation of H2 physisorption in finite diameter carbon nanotube ropes, Chem. Phys. Lett. 320, 352–358 (2000)

    Google Scholar 

  154. M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan: Pore structure of raw and purified HiPco single-walled carbon nanotubes, Chem. Phys. Lett. 365, 69–74 (2002)

    Google Scholar 

  155. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Béguin: Enhanced capacitance of carbon nanotubes through chemical activation, Chem. Phys. Lett. 336, 35–41 (2002)

    Google Scholar 

  156. E. Raymundo-Pinhero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43, 786–795 (2005)

    Google Scholar 

  157. R. Axet, R. Bacsa, B. Machado, P. Serp: Adsorption on and reactivity of carbon nanotubes and graphene. In: Handbook of Carbon Nano Materials, Vol. 5, ed. by F. D’Souza, K.M. Kadish (World Scientific, Singapore 2014) pp. 39–184

    Google Scholar 

  158. Z. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: Dependence on the carbon-atom pyramidalization, Chem. Phys. Chem. 1, 93–97 (2003)

    Google Scholar 

  159. K. Azizi, S. Majid Hashemianzadeh, S. Bahramifar: Density functional theory study of carbon monoxide adsorption on the inside and outside of the armchair single-walled carbon nanotubes, Curr. Appl. Phys. 11, 776–782 (2011)

    Google Scholar 

  160. M. Muris, N. Dupont-Pavlosky, M. Bienfait, P. Zeppenfeld: Where are the molecules adsorbed on single-walled nanotubes?, Surf. Sci. 492, 67–74 (2001)

    Google Scholar 

  161. R.B. Hallock, Y.H. Yang: Adsorption of helium and other gases to carbon nanotubes and nanotubes bundles, J. Low Temp. Phys. 134, 21–30 (2004)

    Google Scholar 

  162. J. Zhu, Y. Wang, W. Li, F. Wei, Y. Yu: Density functional study of nitrogen adsorption in single-wall carbon nanotubes, Nanotechnology 18, 095707 (2007)

    Google Scholar 

  163. J. Zhao, A. Buldum, J. Han, J.P. Lu: Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13, 195–200 (2002)

    Google Scholar 

  164. C. Matranga, B. Bockrath: Hydrogen-bonded and physisorbed CO in single-walled carbon nanotubes bundles, J. Phys. Chem. B 109, 4853–4864 (2005)

    Google Scholar 

  165. D.V. Kazachkin, Y. Nishimura, S. Irle, X. Feng, R. Vidic, E. Borguet: Temperature and pressure dependence of molecular adsorption on single wall carbon nanotubes and the existence of an adsorption/desorption pressure gap, Carbon 48, 1867–1875 (2010)

    Google Scholar 

  166. A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba: Gas adsorption in the inside and outside of single-walled carbon nanotubes, Chem. Phys. Lett. 336, 205–211 (2001)

    Google Scholar 

  167. C.M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima: Adsorption behaviors of HiPco single-walled carbon nanotubes aggregates for alcohol vapors, J. Phys. Chem. 106, 8994–8999 (2002)

    Google Scholar 

  168. H. Ulbricht, G. Moos, T. Hertel: Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite, Phys. Rev. B 66, 075404–1–075404–7 (2002)

    Google Scholar 

  169. H. Ulbricht, J. Kriebel, G. Moos, T. Hertel: Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 363, 252–260 (2002)

    Google Scholar 

  170. J. Hilding, E.A. Grulke, S.B. Sinnott, D. Qian, R. Andrews, M. Jagtoyen: Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir 17, 7540–7544 (2001)

    Google Scholar 

  171. A. Bilic, J.D. Gale: Chemisorption of molecular hydrogen on carbon nanotubes: A route to effective hydrogen storage?, J. Phys. Chem. C 112, 12568–12575 (2008)

    Google Scholar 

  172. M. Hatami, A. Farmany, R. Sahraei: Physisorption and chemisorption of oxygen molecules on single- and multi-walled carbon nanotubes, Fuller. Nanot. Carbon Nanostruct. 22, 434–453 (2014)

    Google Scholar 

  173. E. Durgun, S. Dag, V.M.K. Bagci, O. Gülseren, T. Yildirim, S. Ciraci: Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 67, 201401 (2003)

    Google Scholar 

  174. N. Park, D. Sung, S. Lim, S. Moon, S. Hong: Realistic adsorption geometries and binding affinities of metal nanoparticles onto the surface of carbon nanotubes, Appl. Phys. Lett. 94, 073105 (2009)

    Google Scholar 

  175. J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of carbon nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)

    Google Scholar 

  176. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College, London 1998)

    MATH  Google Scholar 

  177. A. Charlier, E. McRae, R. Heyd, M.F. Charlier, D. Moretti: Classification for double-walled carbon nanotubes, Carbon 37, 1779–1783 (1999)

    Google Scholar 

  178. A. Charlier, E. McRae, R. Heyd, M.F. Charlier: Metal semi-conductor transitions under uniaxial stress for single- and double-walled carbon nanotubes, J. Phys. Chem. Solids 62, 439–444 (2001)

    Google Scholar 

  179. P. Delanay, H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen: Broken symmetry and pseudogaps in ropes of carbon nanotubes, Nature 391, 466–468 (1998)

    Google Scholar 

  180. P. Puech, H. Hubel, D. Dunstan, R.R. Bacsa, C. Laurent, W.S. Bacsa: Discontinuous tangential stress in double wall carbon nanotubes, Phys. Rev. Lett. 93, 095506 (2004)

    Google Scholar 

  181. P.M. Ajayan, M. Terrrones, A. de la Guardia, V. Hue, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbesen: Nanotubes in a flash – ignition and reconstruction, Science 296, 705 (2002)

    Google Scholar 

  182. H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)

    Google Scholar 

  183. T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997)

    Google Scholar 

  184. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002)

    Google Scholar 

  185. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen: Luttinger liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999)

    Google Scholar 

  186. C.T. White, T.N. Todorov: Carbon nanotubes as long ballistic conductors, Nature 393, 240–242 (1998)

    Google Scholar 

  187. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998)

    Google Scholar 

  188. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)

    Google Scholar 

  189. L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.-P. Heremans, C.H. Olk, L. Stockman, C. van Haesendonck, Y. Buynseraeder: Quantum transport in a multi-walled carbon nanotube, Phys. Rev. Lett. 76, 479–482 (1996)

    Google Scholar 

  190. K. Liu, S. Roth, G.S. Duesberg, G.T. Kim, D. Popa, K. Mukhopadhyay, R. Doome, J. B’Nagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61, 2375–2379 (2000)

    Google Scholar 

  191. G. Fedorov, B. Lassagne, M. Sagnes, B. Raquet, J.M. Broto, F. Triozon, S. Roche, E. Flahaut: Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett. 94, 66801–66804 (2005)

    Google Scholar 

  192. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)

    Google Scholar 

  193. Y.A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Y.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard: Supercurrents through single-walled carbon nanotubes, Science 284, 1508–1511 (1999)

    Google Scholar 

  194. B.W. Alphenaar, K. Tsukagoshi, M. Wagner: Magnetoresistance of ferromagnetically contacted carbon nanotubes, Phys. Eng. 10, 499–504 (2001)

    Google Scholar 

  195. S. Berber, Y. Kwon, D. Tomanek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000)

    Google Scholar 

  196. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)

    Google Scholar 

  197. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)

    Google Scholar 

  198. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334, 173–178 (2002)

    Google Scholar 

  199. R.P. Gao, Z.L. Wang, Z.G. Bai, W.A. De Heer, L.M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622–625 (2000)

    Google Scholar 

  200. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)

    Google Scholar 

  201. N. Yao, V. Lordie: Young’s modulus of single-wall carbon nanotubes, J. Appl. Phys. 84, 1939–1943 (1998)

    Google Scholar 

  202. O. Lourie, H.D. Wagner: Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension, Appl. Phys. Lett. 73, 3527–3529 (1998)

    Google Scholar 

  203. J. Zhang, M. Terrones, C.-R. Park, R. Mukherjee, M. Monthioux, N. Koratkar, Y.S. Kim, R. Hurt, E. Frackowiak, T. Enoki, Y. Chen, Y. Chen, A. Bianco: Carbon science in 2016: Status, challenges and perspectives, Carbon 98, 708–732 (2016)

    Google Scholar 

  204. S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green: A simple chemical method of opening and filling carbon nanotubes, Nature 372, 159–162 (1994)

    Google Scholar 

  205. M. Monthioux, J.-C. Charlier: Giving credit where credit is due: the Stone-(Thrower)-Wales designation revisited, Carbon 75, 1–4 (2014)

    Google Scholar 

  206. S. Agnihotri, J.P. Mota, M. Rostam-Abadi, M.J. Rood: Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation, Langmuir 21, 896–904 (2005)

    Google Scholar 

  207. M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809–1823 (2002)

    Google Scholar 

  208. M. Monthioux: Introduction to the meta-nanotube book. In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 1–5

    Google Scholar 

  209. M. Monthioux (Ed.): Carbon Meta-Nanotubes: Synthesis, Properties, Applications (Wiley-Blackwell, Chichester 2012)

    Google Scholar 

  210. D. Golberg, M. Terrones: Heterogeneous Nanotubes (X*CNTs, X*BNNTs). In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 323–409

    Google Scholar 

  211. V. Krstic, C.P. Ewels, T. Wågberg, M.S. Ferreira, A.M. Janssens, O. Stéphan, M. Glerup: Indirect magnetic coupling in light-element-doped single-walled carbon nanotubes, ACS Nano 9, 5081–5086 (2010)

    Google Scholar 

  212. W.K. Hsu, S.Y. Chu, E. Munoz-Picone, J.L. Boldu, S. Firth, P. Franchi, B.P. Roberts, A. Shilder, H. Terrones, N. Grobert, Y.Q. Zhu, M. Terrones, M.E. McHenry, H.W. Kroto, D.R.M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572–579 (2000)

    Google Scholar 

  213. R. Czerw, M. Terrones, J.C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Caroll: Identification of electron donor states, in N-doped carbon nanotubes, Nano Lett. 1, 457–460 (2001)

    Google Scholar 

  214. O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994)

    Google Scholar 

  215. A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex, H. Pascard: Boron nitride nanotubes, Carbon 36, 743–752 (1998)

    Google Scholar 

  216. C.C. Tang, L.M. de la Chapelle, P. Li, Y.M. Liu, H.Y. Dang, S.S. Fan: Catalytic growth of nanotube and nanobamboo structures of boron nitride, Chem. Phys. Lett. 342, 492–496 (2001)

    Google Scholar 

  217. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime: Synthesis of nanoparticles and nanotubes with well separated layers of boron-nitride and carbon, Science 278, 653–655 (1997)

    Google Scholar 

  218. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000)

    Google Scholar 

  219. D.E. Gourari, M. Razafinimanana, M. Monthioux, R. Arenal, F. Valensi, S. Joulié, V. Serin: Synthesis of (B-C-N) nanomaterials by arc discharge using heterogeneous anodes, Plasma Sci. Technol. 18, 465–468 (2016)

    Google Scholar 

  220. R.S. Lee, J. Gavillet, M.L. de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime: Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64, 121405.1–121405.4 (2001)

    Google Scholar 

  221. M. Monthioux, E. Flahaut, J.-P. Cleuziou: Hybrid carbon nanotubes: Strategy, progress, and perspectives, J. Mater. Res. 21, 2774–2793 (2006)

    Google Scholar 

  222. B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer: Abundance of encapsulated C60 in single-wall carbon nanotubes, Chem. Phys. Lett. 310, 21–24 (1999)

    Google Scholar 

  223. N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, M. Pasquali: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science 339, 182–186 (2013)

    Google Scholar 

  224. D. Ugarte, A. Châtelain, W.A. de Heer: Nanocapillarity and chemistry in carbon nanotubes, Science 274, 1897–1899 (1996)

    Google Scholar 

  225. J. Cook, J. Sloan, M.L.H. Green: Opening and filling carbon nanotubes, Fuller. Sci. Technol. 5, 695–704 (1997)

    Google Scholar 

  226. P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993)

    Google Scholar 

  227. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522–525 (1993)

    Google Scholar 

  228. S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Yttrium carbide in nanotubes, Nature 362, 503 (1993)

    Google Scholar 

  229. S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters, Appl. Phys. Lett. 63, 2073–2075 (1993)

    Google Scholar 

  230. R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Single-crystal metals encapsulated in carbon nanoparticles, Science 259, 346–348 (1993)

    Google Scholar 

  231. A. Loiseau, H. Pascard: Synthesis of long carbon nanotubes filled with Se, S, Sb, and Ge by the arc method, Chem. Phys. Lett. 256, 246–252 (1996)

    Google Scholar 

  232. N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard: Filling carbon nanotubes with metals by the arc discharge method: The key role of sulfur, Eur. Phys. J. B 4, 147–157 (1998)

    Google Scholar 

  233. C.H. Kiang, J.S. Choi, T.T. Tran, A.D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449–7551 (1999)

    Google Scholar 

  234. Z.L. Zhang, B. Li, Z.J. Shi, Z.N. Gu, Z.Q. Xue, L.M. Peng: Filling of single-walled carbon nanotubes with silver, J. Mater. Res. 15, 2658–2661 (2000)

    Google Scholar 

  235. A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Tao: Metal nanowires and intercalated metal layers in single-walled carbon nanotubes bundles, Chem. Mater. 12, 202–205 (2000)

    Google Scholar 

  236. J. Mittal, M. Monthioux, H. Allouche: Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air, Chem. Phys. Lett. 339, 311–318 (2001)

    Google Scholar 

  237. E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki: Capillarity and wetting of carbon nanotubes, Science 265, 1850–1852 (1994)

    Google Scholar 

  238. E. Flahaut, J. Sloan, K.S. Coleman, V.C. Williams, S. Friedrichs, N. Hanson, M.L.H. Green: 1-D p-block halide crystals confined into single walled carbon nanotubes, Proc. Mater. Res. Soc. Symp. 633, A13.15.1–A13.15.6 (2001)

    Google Scholar 

  239. J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Integral atomic layer architectures of 1-D crystals inserted into single walled carbon nanotubes, Chem. Commun. (2002) doi:10.1039/B200537A

  240. J. Sloan, M.C. Novotny, S.R. Bailey, G. Brown, C. Xu, V.C. Williams, S. Friedrichs, E. Flahaut, R.L. Callender, A.P.E. York, K.S. Coleman, M.L.H. Green, R.E. Dunin-Borkowski, J.L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61–65 (2000)

    Google Scholar 

  241. G. Brown, S.R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K.S. Coleman, J.L. Hutchinson, R.E. Dunin-Borkowski, M.L.H. Green: Electron beam induced in situ clusterisation of 1-D ZrCl4 chains within single-walled carbon nanotubes, Chem. Commun. (2001) doi:10.1039/B101261O

  242. J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun. (1999) doi:10.1039/A901572H

  243. X. Fan, E.C. Dickey, P.C. Eklund, K.A. Williams, L. Grigorian, R. Buczko, S.T. Pantelides, S.J. Pennycook: Atomic arrangement of iodine atoms inside single-walled carbon nanotubes, Phys. Rev. Lett. 84, 4621–4624 (2000)

    Google Scholar 

  244. G. Brown, S.R. Bailey, M. Novotny, R. Carter, E. Flahaut, K.S. Coleman, J.L. Hutchison, M.L.H. Green, J. Sloan: High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes, Appl. Phys. A 76, 457–462 (2003)

    Google Scholar 

  245. J. Sloan, D.E. Luzzi, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Imaging and characterization of molecules and one-dimensional crystals formed within carbon nanotubes, Mater. Res. Soc. Bull. 29, 265–271 (2004)

    Google Scholar 

  246. B.W. Smith, M. Monthioux, D.E. Luzzi: Encapsulated C60 in carbon nanotubes, Nature 396, 323–324 (1998)

    Google Scholar 

  247. B.W. Smith, D.E. Luzzi, Y. Achiba: Tumbling atoms and evidence for charge transfer in La2@C80@SWNT, Chem. Phys. Lett. 331, 137–142 (2000)

    Google Scholar 

  248. K. Suenaga, M. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280–2282 (2000)

    Google Scholar 

  249. D.E. Luzzi, B.W. Smith, R. Russo, B.C. Satishkumar, F. Stercel, N.R.C. Nemes: Encapsulation of metallofullerenes and metallocenes in carbon nanotubes. In: Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin, Heidelberg 2001) pp. 622–626

    Google Scholar 

  250. J. Chancolon, F. Archaimbault, A. Pineau, S. Bonnamy: Confinement of selenium into carbon nanotubes, Fuller. Nanotub. Carbon Nanostruct. 13, 189–194 (2005)

    Google Scholar 

  251. L. Guan, K. Suenaga, Z. Shi, Z. Gu, S. Iijima: Polymorphic structures of iodine and their phase transition in confined nanospace, Nano Lett. 7, 1532–1535 (2007)

    Google Scholar 

  252. B.W. Smith, D.E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis, Chem. Phys. Lett. 321, 169–174 (2000)

    Google Scholar 

  253. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallo-fullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384–5387 (2000)

    Google Scholar 

  254. Y.P. Sun, K. Fu, Y. Lin, W. Huang: Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res. 35, 1095–1104 (2002)

    Google Scholar 

  255. S. Campidelli, S.S. Wong, M. Prato: Functionalized Carbon nanotubes (X-CNTs). In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 113–161

    Google Scholar 

  256. S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem. Phys. Lett. 402, 422–427 (2005)

    Google Scholar 

  257. W. Xia, C. Jin, S. Kundu, M. Muhler: A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor, Carbon 47, 919–922 (2009)

    Google Scholar 

  258. D.C. Vennerberg, R.L. Quirino, Y. Chang, M.R. Kessler: Oxidation behavior of multiwalled carbon nanotubes fluidized with ozone, Appl. Mat. Interfaces 6, 1835–1842 (2014)

    Google Scholar 

  259. P. Lassègue, N. Coppey, L. Noé, M. Monthioux, B. Caussat: Decoration of carbon nanotubes by semiconducting or metallic nanoparticles using fluidized bed chemical vapor deposition, Kona Powder Part. J. 33, 322–332 (2016)

    Google Scholar 

  260. J. Chen, M.A. Hamon, M. Hui, C. Yongsheng, A.M. Rao, P.C. Eklund, R.C. Haddon: Solution properties of single-walled carbon nanotubes, Science 282, 95–98 (1998)

    Google Scholar 

  261. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato: Chemistry of Carbon Nanotubes, Chem. Rev. 106, 1105–1136 (2006)

    Google Scholar 

  262. J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon: Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 105, 2525–2528 (2001)

    Google Scholar 

  263. K. Nagaraju, R. Reddy, N. Reddy: A review on protein functionalized carbon nanotubes, J. Appl. Biomater. Funct. Mater. 13, e301–e312 (2015)

    Google Scholar 

  264. S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.-Y. Lee, T. Kawai: A review of DNA functionalized/grafted carbon nanotubes and their characterization, Sens. Actuat. B 122, 672–682 (2007)

    Google Scholar 

  265. Y.P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L.A. Riddle, Y.J. Yu, D.L. Carroll: Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties, Chem. Mater. 13, 2864–2869 (2001)

    Google Scholar 

  266. K. Fu, W. Huang, Y. Lin, L.A. Riddle, D.L. Carroll, Y.P. Sun: Defunctionalization of functionalized carbon nanotubes, Nano Lett. 1, 439–441 (2001)

    Google Scholar 

  267. P.W. Chiu, G.S. Duesberg, U. Dettlaff-Weglikowska, S. Roth: Interconnection of carbon nanotubes by chemical functionalization, Appl. Phys. Lett. 80, 3811–3813 (2002)

    Google Scholar 

  268. M. Tunckol, J. Durand, P. Serp: Carbon nanomaterial–ionic liquid hybrids, Carbon 50, 4303–4334 (2012)

    Google Scholar 

  269. A. Di Crescenzo, V. Ettorre, A. Fontana: Non-covalent and reversible functionalization of carbon nanotubes, Beilstein J. Nanotechnol. 5, 1675–1690 (2014)

    Google Scholar 

  270. E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smalley, R.H. Hauge, J.L. Margrave: Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett. 296, 188–194 (1998)

    Google Scholar 

  271. V.N. Khabashesku, W.E. Billups, J.L. Margrave: Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Acc. Chem. Res. 35, 1087–1095 (2002)

    Google Scholar 

  272. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites: Part A 41, 1345–1367 (2010)

    Google Scholar 

  273. L. Meng, C. Fu, Q. Lu: Advanced technology for functionalization of carbon nanotubes, Progr. Nat. Sci. 19, 801–810 (2009)

    Google Scholar 

  274. J. Han, C. Gao: Functionalization of carbon nanotubes and other nanocarbons by azide chemistry, Nano-Micro Lett. 2, 213–226 (2010)

    Google Scholar 

  275. R.R. Bacsa, P. Serp: Decorated (coated) nanotubes. In: Carbon Meta-Nanotubes: Synthesis, Properties, Applications, ed. by M. Monthioux (Wiley-Blackwell, Chichester 2012) pp. 163–221

    Google Scholar 

  276. K.N. Chaudhari, S. Chaudhari, J.S. Yu: Synthesis and supercapacitor performance of Au-nanoparticle decorated MWCNT, J. Electroanal. Chem. 761, 98–105 (2016)

    Google Scholar 

  277. G.G. Wildgoose, C.E. Banks, R.G. Compton: Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications, Small 2, 182–193 (2006)

    Google Scholar 

  278. Q. Kuang, S.F. Li, Z.X. Xie, S.C. Lin, X.H. Zhang, S.Y. Xie, R.B. Huang, L.S. Zheng: Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapour deposition, Carbon 44, 1166–1172 (2006)

    Google Scholar 

  279. A. Goulas, J.R. van Ommen: Scalable production of nanostructured particles using atomic layer deposition, Kona Powder Part. J. 31, 234–246 (2014)

    Google Scholar 

  280. S. Banerjee, K. Dasgupta, A. Kumar, P. Ruz, B. Vishwanadh, J.B. Joshi, V. Sudarsan: Comparative evaluation of hydrogen storage behavior of Pd doped carbon nanotubes prepared by wet impregnation and polyol methods, Int. J. Hydrogen En. 40(8), 3268–3276 (2015)

    Google Scholar 

  281. K. Fu, O. Yildiz, H. Bhanushali, Y. Wang, K. Stano, L. Xue, X. Zhang, P.D. Bradford: Aligned carbon nanotube-Silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes, Adv. Mater. 25, 5109–5114 (2013)

    Google Scholar 

  282. F. Mendoza, D.M. Hernandez, V. Makarov, E. Febus, B.R. Weiner, G. Morell: Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films, Sensors Actuat. B 190, 227–233 (2014)

    Google Scholar 

  283. M. Feng, R.J. Puddephatt: Chemical vapour deposition of nickel-group metals on multiwall carbon nanotubes, Can. J. Chem. 85, 645–650 (2007)

    Google Scholar 

  284. N. Coppey, L. Noé, M. Monthioux, B. Caussat: Decorated carbon nanotubes by silicon deposition in fluidized bed for li-ion battery anodes, Chem. Eng. Res. Design 91, 2491–2496 (2013)

    Google Scholar 

  285. S.R. Bakshi, D. Lahiri, A. Agarwal: Carbon nanotube reinforced metal matrix composites - A review, Int. Mater. Rev. 55, 41–64 (2010)

    Google Scholar 

  286. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner: Spark plasma sintering of metals and metal matrix nanocomposites: A review, J. Nanomater. 2012, 983470 (2012)

    Google Scholar 

  287. S.C. Tjong: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R-Rep. 74, 281–350 (2013)

    Google Scholar 

  288. C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, D.H. Wu: Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon 37, 855–858 (1999)

    Google Scholar 

  289. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito: Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res. 13, 2445–2449 (1998)

    Google Scholar 

  290. H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki: Investigation of carbon nanotube reinforced aluminum matrix composite materials, Compos. Sci. Technol. 70, 546–550 (2010)

    Google Scholar 

  291. H.J. Choi, J.Y. Shin, B.H. Min, J.S. Park, D.H. Bae: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites, J. Mater. Res. 24, 2610–2616 (2009)

    Google Scholar 

  292. C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang: Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater. Lett. 62, 2301–2303 (2008)

    Google Scholar 

  293. K.T. Kim, S.I. Cha, S.H. Hong, S.H. Hong: Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites, Mater. Sci. Eng. A 430, 27–33 (2006)

    Google Scholar 

  294. W.M. Daoush, B.K. Lim, C.B. Mo, D.H. Nam, S.H. Hong: Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process, Mater. Sci. Eng. A 513–514, 247–253 (2009)

    Google Scholar 

  295. C. Arnaud, F. Lecouturier, D. Mesguich, N. Ferreira, G. Chevallier, C. Estournès, A. Weibel, C. Laurent: High strength-high conductivity double-walled carbon nanotube - Copper composite wires, Carbon 96, 212–215 (2016)

    Google Scholar 

  296. C. Guiderdoni, E. Pavlenko, V. Turq, A. Weibel, P. Puech, C. Estournès, A. Peigney, W. Bacsa, C. Laurent: The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties, Carbon 58, 185–197 (2013)

    Google Scholar 

  297. C.S. Goh, J. Wei, L.C. Lee, M. Gupta: Simultaneous enhancement in strength and ductility reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A 423, 153–156 (2006)

    Google Scholar 

  298. F.J. Sun, C.S. Shi, K.Y. Rhee, N.Q. Zhao: In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites, J. Alloys Compounds 551, 496–501 (2013)

    Google Scholar 

  299. T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater. 2, 416–418 (2000)

    Google Scholar 

  300. K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu: Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes, Compos. Sci. Technol. 69, 1077–1081 (2009)

    Google Scholar 

  301. E. Carreno-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forro, R. Schaller: Carbon nanotube/magnesium composites, Phys. Status Solidi (a) 201, R53–R55 (2004)

    Google Scholar 

  302. Q. Ngo, B.A. Cruden, A.M. Cassell, M.D. Walker, Q. Ye, J.E. Koehne, M. Meyyappan, J. Li, C.Y. Yang: Thermal conductivity of carbon nanotube composite films, Mater. Res. Soc. Symp. Proc. 812, 179–184 (2004)

    Google Scholar 

  303. X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi: Corrosion behavior of carbon nanotubes-Ni composite coating, Surf. Coat. Technol. 191, 351–356 (2005)

    Google Scholar 

  304. X.H. Chen, C.S. Chen, H.N. Xiao, H.B. Liu, L.P. Zhou, S.L. Li, G. Zhang: Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits, Tribol. Int. 39, 22–28 (2006)

    Google Scholar 

  305. A. Peigney, A. Weibel, C. Laurent: Carbon nanotubes in ceramic-matrix nanocomposites. In: Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific, Valencia 2011) pp. 179–196

    Google Scholar 

  306. J. Cho, A.R. Boccaccini, M.S.P. Shaffer: Ceramic matrix composites containing carbon nanotubes, J. Mater. Sci. 44, 1934–1951 (2009)

    Google Scholar 

  307. E. Zapata-Solvas, D. Gómez-García, A. Domínguez-Rodríguez: Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites, J. Eur. Ceram. Soc. 32, 3001–3020 (2012)

    Google Scholar 

  308. S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, S.H. Hong: Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process, Scr. Mater. 53, 793–797 (2005)

    Google Scholar 

  309. M. Estili, A. Kawasaki, Y. Sakka: Highly concentrated 3-D macrostructure of individual carbon nanotubes in a ceramic environment, Adv. Mater. 24, 4322–4326 (2012)

    Google Scholar 

  310. X. Wang, N.P. Padture, H. Tanaka: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites, Nat. Mater. 3, 539–544 (2004)

    Google Scholar 

  311. W.A. Curtin, B.W. Sheldon: CNT-reinforced ceramics and metals, Mater. Today 7, 44–49 (2004)

    Google Scholar 

  312. Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, J.M. Xu: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Mater. 52, 931–944 (2004)

    Google Scholar 

  313. M. Estili, Y. Sakka: Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites, Sci. Technol. Adv. Mater. 15, 064902 (2014)

    Google Scholar 

  314. A. Peigney, F. Legorreta Garcia, C. Estournès, A. Weibel, C. Laurent: Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites, Carbon 48, 1952–1960 (2010)

    Google Scholar 

  315. D.S. Lim, J.W. An, H.J. Lee: Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites, Wear 252, 512–517 (2002)

    Google Scholar 

  316. D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, H. Jang: Effect of CNT distribution on tribological behavior of alumina-CNT composites, Wear 259, 539–544 (2005)

    Google Scholar 

  317. Z.H. Xia, J. Lou, W.A. Curtin: A multiscale experiment on the tribological of aligned carbon nanotube/ceramic composites, Scr. Mater. 58, 223–226 (2008)

    Google Scholar 

  318. A. Kasperski, A. Weibel, D. Alkattan, C. Estournès, V. Turq, C. Laurent, A. Peigney: Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering, Scr. Mater. 69, 338–341 (2013)

    Google Scholar 

  319. G.-D. Zhan, J.D. Kuntz, H. Wang, C.-M. Wang, A.K. Mukherjee: Anisotropic thermal properties of single-wall-carbon-nanotube-reinforced nanoceramics, Philos. Mag. Lett. 84, 419–423 (2004)

    Google Scholar 

  320. Q. Huang, L. Gao, Y. Liu, J. Sun: Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites, J. Mater. Chem. 15, 1995–2001 (2005)

    Google Scholar 

  321. G.-D. Zhan, J.D. Kuntz, J.E. Garay, A.K. Mukherjee: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, Appl. Phys. Lett. 83, 1228–1230 (2003)

    Google Scholar 

  322. S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, A. Peigney: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Mater. 52, 1061–1067 (2004)

    Google Scholar 

  323. S.-L. Shi, J. Liang: Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites, J. Appl. Phys. 101, 023708–5 (2007)

    Google Scholar 

  324. M.J. de Andrade, A. Weibel, C. Laurent, S. Roth, C.P. Bergmann, C. Estournès, A. Peigney: Electrical conductive double-walled carbon nanotubes-silica glass nanocomposites prepared by the sol-gel process and spark plasma sintering, Scr. Mater. 61, 988–991 (2009)

    Google Scholar 

  325. A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset: Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chem. Phys. Lett. 352, 20–25 (2002)

    Google Scholar 

  326. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 265, 1212–1214 (1994)

    Google Scholar 

  327. Z. Spitalskya, D. Tasisb, K. Papagelisb, C. Galiotis: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35, 357–401 (2010)

    Google Scholar 

  328. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey: Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett. 330, 219–225 (2000)

    Google Scholar 

  329. L.S. Schadler, S.C. Giannaris, P.M. Ajayan: Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73, 3842–3844 (1998)

    Google Scholar 

  330. S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem. B 106, 3046–3048 (2002)

    Google Scholar 

  331. H.D. Wagner: Nanotube-polymer adhesion: A mechanics approach, Chem. Phys. Lett. 361, 57–61 (2002)

    Google Scholar 

  332. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness, Adv. Mater. 12, 750–753 (2000)

    Google Scholar 

  333. X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young: Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mater. 12, 1049–1052 (2000)

    Google Scholar 

  334. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou: Carbon nanotube/carbon fiber hybrid multiscale composites, J. Appl. Phys. 91, 6034–6037 (2002)

    Google Scholar 

  335. F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler, K. Schulte: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol. 64, 2363–2371 (2004)

    Google Scholar 

  336. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Compos. Sci. Tech. 65, 2300–2313 (2005)

    Google Scholar 

  337. H. Rajoria, N. Jalili: Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites, Compos. Sci. Tech. 65, 2079–2093 (2005)

    Google Scholar 

  338. A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman: Super-tough carbon-nanotube fibers, Nature 23, 703 (2003)

    Google Scholar 

  339. P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri: Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment, Nano Lett. 5, 2212–2215 (2005)

    Google Scholar 

  340. B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000)

    Google Scholar 

  341. B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 11, 1210–1212 (2002)

    Google Scholar 

  342. G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, W.R. Lee: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem. 21, 11–25 (2015)

    Google Scholar 

  343. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Winlde: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer 44, 5893–5899 (2003)

    Google Scholar 

  344. Z. Hana, A. Fina: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci. 36, 914–944 (2011)

    Google Scholar 

  345. M.S.P. Shaffer, A.H. Windle: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater. 11, 937–941 (1999)

    Google Scholar 

  346. L. Jin, C. Bower, O. Zhou: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett. 73, 1197–1199 (1998)

    Google Scholar 

  347. H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 72, 188–190 (1998)

    Google Scholar 

  348. H.D. Wagner, O. Lourie, X.F. Zhou: Macrofragmentation and microfragmentation phenomena in composite materials, Compos. Part A 30, 59–66 (1998)

    Google Scholar 

  349. J.R. Wood, Q. Zhao, H.D. Wagner: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy, Compos. Part A 32, 391–399 (2001)

    Google Scholar 

  350. Q. Zhao, J.R. Wood, H.D. Wagner: Using carbon nanotubes to detect polymer transitions, J. Polym. Sci. B 39, 1492–1495 (2001)

    Google Scholar 

  351. M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinesz, J.M. Benoit, J. Schreiber, O. Chauvet: Synthesis of a new polyaniline/nanotube composite: In-situ polymerisation and charge transfer through site-selective interaction, Chem. Commun. (2001) doi:10.1039/B104009J

  352. D. Qian, E.C. Dickey, R. Andrews, T. Rantell: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett. 76, 2868–2870 (2000)

    Google Scholar 

  353. V. Datsyuk, C. Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, C. Laurent: Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers, Carbon 43, 873–876 (2005)

    Google Scholar 

  354. R. Blake, Y.K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc. 126, 10226–10227 (2004)

    Google Scholar 

  355. T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer 45, 4227–4239 (2004)

    Google Scholar 

  356. C. Wei, D. Srivastava, K. Cho: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, preprint arXiv:cond-mat/0203349, 1–11 (2002)

    Google Scholar 

  357. J.C. Grunlan, M.V. Bannon, A.R. Mehrabi: Latex-based, single-walled nanotube composites: Processing and electrical conductivity, Polym. Prepr. 45, 154–155 (2004)

    Google Scholar 

  358. J.C. Grunlan, A.R. Mehrabi, M.V. Bannon, J.L. Bahr: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold, Adv. Mater. 16, 150–153 (2004)

    Google Scholar 

  359. C. Pirlot, I. Willems, A. Fonseca, J.B. Nagy, J. Delhalle: Preparation and characterization of carbon nanotube/polyacrylonitrile composites, Adv. Eng. Mater. 4, 109–114 (2002)

    Google Scholar 

  360. H. Lam, H. Ye, Y. Gogotsi, F. Ko: Structure and properties of electrospun single-walled carbon nanotubes reinforced nanocomposite fibrils by co-electrospinning, Polym. Prepr. 45, 124–125 (2004)

    Google Scholar 

  361. L. Cao, H. Chen, M. Wang, J. Sun, X. Zhang, F. Kong: Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites, J. Phys. Chem. B 106, 8971–8975 (2002)

    Google Scholar 

  362. I. Musa, M. Baxendale, G.A.J. Amaratunga, W. Eccleston: Properties of regular poly(3-octylthiophene)/multi-wall carbon nanotube composites, Synth. Met. 102, 1250 (1999)

    Google Scholar 

  363. E. Kymakis, I. Alexandou, G.A.J. Amaratunga: Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation, Synth. Met. 127, 59–62 (2002)

    Google Scholar 

  364. K. Yoshino, H. Kajii, H. Araki, T. Sonoda, H. Take, S. Lee: Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites, Fuller. Sci. Technol. 7, 695–711 (1999)

    Google Scholar 

  365. S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes. A novel material for molecular optoelectronics, Adv. Mater. 10, 1091–1093 (1998)

    Google Scholar 

  366. P. Fournet, D.F. O’Brien, J.N. Coleman, H.H. Horhold, W.J. Blau: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes, Synth. Met. 121, 1683–1684 (2001)

    Google Scholar 

  367. H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J. Ballato, A.E. Strevens, D. O’Brien, W.J. Blau: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly(m-phenylene-vinylene-co-2,5-dioctoxy-p-phenylene vinylene), Appl. Phys. Lett. 77, 1393–1395 (2000)

    Google Scholar 

  368. H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J.W. Park, J.H. Lee: Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: The role of carbon nanotubes in a hole conducting polymer, Synth. Met. 116, 369–372 (2001)

    Google Scholar 

  369. H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend: Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Adv. Mater. 11, 1281–1285 (1999)

    Google Scholar 

  370. P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002)

    Google Scholar 

  371. K. Jiang, Q. Li, S. Fan: Spinning continuous carbon nanotube yarn, Nature 419, 801 (2002)

    Google Scholar 

  372. M. Zhang, K.R. Atkinson, R.H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1356–1361 (2004)

    Google Scholar 

  373. J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005)

    Google Scholar 

  374. B. Maruyama, K. Alam: Carbon nanotubes and nanofibers in composite materials, SAMPE J. 38, 59–70 (2002)

    Google Scholar 

  375. M. Monthioux: Applications of carbon nanotubes. In: Strained Hydrocarbons, ed. by H. Dodziuk (Wiley, Weinheim 2009) pp. 356–373

    Google Scholar 

  376. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart: Carbon nanotubes: Present and future commercial applications, Science 339, 535–539 (2013)

    Google Scholar 

  377. H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996)

    Google Scholar 

  378. J.H. Hafner, C.L. Cheung, A.T. Wooley, C.M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Progr. Biophys. Mol. Biol. 77, 73–110 (2001)

    Google Scholar 

  379. S.S. Wong, E. Joselevich, A.T. Woodley, C.L. Cheung, C.M. Lieber: Covalently functionalized nanotubes as nanometre-size probes in chemistry and biology, Nature 394, 52–55 (1998)

    Google Scholar 

  380. C.L. Cheung, J.H. Hafner, C.M. Lieber: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proc. Natl. Acad. Sci. USA 97, 3809–3813 (2000)

    Google Scholar 

  381. W.A. de Heer, A. Châtelain, D. Ugarte: A carbon nanotube field-emission electron source, Science 270, 1179–1180 (1995)

    Google Scholar 

  382. J.M. Bonard, J.P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelâin: Field emission from single-wall carbon nanotube films, Appl. Phys. Lett. 73, 918–920 (1998)

    Google Scholar 

  383. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin: Large curent density from carbon nanotube field emitters, Appl. Phys. Lett. 75, 873–875 (1999)

    Google Scholar 

  384. Y. Saito, R. Mizushima, T. Tanaka, K. Tohji, K. Uchida, M. Yumura, S. Uemura: Synthesis, structure, and field emission of carbon nanotubes, Fuller. Sci. Technol. 7, 653–664 (1999)

    Google Scholar 

  385. F. Houdellier, A. Masseboeuf, M. Monthioux, M.J. Hÿtch: New carbon cone nanotip for use in a highly coherent cold field emission electron microscope, Carbon 50, 2037–2044 (2012)

    Google Scholar 

  386. C. Peltola: Weeks, I.A. Levitsky, D.A. Britz, P. Glatkowski, M. Trottier, T. Huang: Carbon-nanotube transparent electrodes for flexible displays, Inf. Disp. 23, 20–23 (2007)

    Google Scholar 

  387. C.M. Trottier, P. Glatkowski, P. Wallis, J. Luo: Properties and characterization of carbon-nanotube-based transparent conductive coating, J. Soc. Inf. Disp. 13, 759–763 (2005)

    Google Scholar 

  388. D.S. Hecht, L.B. Hu, G. Irvin: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater. 23, 1482–1513 (2011)

    Google Scholar 

  389. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94–97 (2000)

    Google Scholar 

  390. T. Hawkins, S. Drozdz: Cathodic nanocoating technology for corrosion control and steel structures. In: Waterbone Symp., Proc. Thirty-Ninth Ann. Int. Waterborne, High Solids, Powder Coat. Symp., ed. by J.W. Rawlins, R.F. Storey (DEStech, Lancaster 2012) pp. 100–105

    Google Scholar 

  391. J.R. Dahn: Phase diagram of LixC6, Phys. Rev. B 44, 9170–9177 (1991)

    Google Scholar 

  392. C. de las Casas, W. Li: A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources 208, 74–85 (2012)

    Google Scholar 

  393. G. Maurin, F. Henn: Electrochemical insertion of lithium in carbon nanotubes. In: Encylopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific, California 2003) pp. 773–792

    Google Scholar 

  394. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle: Carbon nanotubes for lithium ion batteries, Energ. Environ. Sci. 2, 638–654 (2009)

    Google Scholar 

  395. L. Dai, D.W. Chang, J.-B. Baek, W. Lu: Carbon nanomaterials for advanced energy conversion and storage, Small 8, 1130–1166 (2012)

    Google Scholar 

  396. M. Endo, T. Hayashi, Y.-A. Kim: Large-scale production of carbon nanotubes and their applications, Pure Appl. Chem. 78, 1703–1713 (2006)

    Google Scholar 

  397. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses: Recent progress in carbon nanotube-based gas sensors, Nanotechnology 19, 332001 (2008)

    Google Scholar 

  398. Y. Wang, J.T.W. Yeow: A Review of carbon nanotubes-based gas sensors, J. Sensors 2009, 493904 (2009)

    Google Scholar 

  399. P. Bondavalli, P. Legagneux, D. Pribat: Carbon nanotubes based transistors as gas sensors: State of the art and critical review, Sensors Actuat. B 140, 304–318 (2009)

    Google Scholar 

  400. M. Meyyappan: Carbon nanotube-based chemical sensors, Small 12, 2118–2129 (2016)

    Google Scholar 

  401. D.W.H. Fam, A. Palaniappana, A.I.Y. Tok, B. Liedberga, S.M. Moochhal: A review on technological aspects influencing commercialization of carbon nanotube sensors, Sensors Actuat. B 157, 1–7 (2011)

    Google Scholar 

  402. P. Serp: Carbon. In: Comprehensive Inorganic Chemistry II, Vol. 7, ed. by J. Reedijk, K. Poeppelmeier (Elsevier, Oxford 2013) pp. 323–369

    Google Scholar 

  403. J.M. Planeix, N. Coustel, B. Coq, B. Botrons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)

    Google Scholar 

  404. P. Serp, B. Machado (Eds.): Nanostructured Carbon Materials for Catalysis, RSC Catalysis (Cambridge, Cambridge 2015)

    Google Scholar 

  405. E. Antolini: Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B 88, 1–24 (2009)

    Google Scholar 

  406. S. Mukherjee, A. Bates, S.C. Lee, D.-H. Lee, S. Park: A Review of the application of CNTs in PEM fuel cells, Int. J. Green Energ. 12, 787–809 (2015)

    Google Scholar 

  407. R. Hurt, M. Monthioux, A. Kane: Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue, Carbon 44(6), 1028–1033 (2006)

    Google Scholar 

  408. C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, R.B. Sim: Complement activation and protein adsorption by carbon nanotubes, Mol. Immun. 43, 193–201 (2006)

    Google Scholar 

  409. C. Salvador-Morales, P. Townsend, E. Flahaut, C. Vénien-Bryan, A. Vlandas, M.L.H. Green, R.B. Sim: Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defence mechanisms, Carbon 45, 607–617 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Monthioux, M. et al. (2017). Carbon Nanotubes. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics