Skip to main content

Light

  • Chapter
  • First Online:
Machine Vision

Abstract

Optical image acquisition and measurement methods rely on the properties of light. Light can be described physically in two very different ways: as a wave or as a particle. Depending on the concrete physical scenario in question, the one or the other perspective is more useful for describing an observed effect. Both of them are legitimate, but neither explains all observed phenomena. This is often referred to as the wave–particle duality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Jonathan Balzer. Regularisierung des Deflektometrieproblems – Grundlagen und Anwendung. PhD thesis, Universität Karlsruhe (TH), 2008.

    Google Scholar 

  2. Walter Benenson, John Harris, Horst Stöcker, and Holger Lutz, editors. Handbook of physics. Springer, 3rd edition, 2006.

    Google Scholar 

  3. Ludwig Bergmann, Clemens Schaefer, Heinz Niedrig, and Hans-Joachim Eichler, editors. Lehrbuch der Experimentalphysik, volume 3: Optik: Wellen- und Teilchenoptik. De Gruyter, 10th edition, 2004.

    Google Scholar 

  4. Eric Betzig and Jay Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 257(5067):189–195, July 1992.

    Article  Google Scholar 

  5. Max Born and Emil Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, 7th edition, 2006.

    Google Scholar 

  6. Edward Collett. Field guide to polarization. SPIE Press, 2005.

    Google Scholar 

  7. Cree, Inc. Cree® XLamp® MC-E LED Product family data sheet. www.cree.com/products/pdf/XLampMC-E.pdf, 2012.

  8. Guenther Derra, Holger Moench, Ernst Fischer, Hermann Giese, Ulrich Hechtfischer, Gero Heusler, Achim Koerber, Ulrich Niemann, Folke-Charlotte Noertemann, Pavel Pekarski, Jens Pollmann-Retsch, Arnd Ritz, and Ulrich Weichmann. UHP lamp systems for projection applications. Journal of Physics D: Applied Physics, 38:2995–3010, 2005.

    Google Scholar 

  9. Rainer Dohlus. Photonik: Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers. Oldenbourg, 2010.

    Google Scholar 

  10. Albert Einstein. Zur Quantentheorie der Strahlung. Physikalische Zeitschrift, 18:121–128, 1917.

    Google Scholar 

  11. Hiroyuki Fujiwara. Spectroscopic Ellipsometry: Principles and Applications. Wiley, 2007.

    Google Scholar 

  12. Anthony Gerrard and James Burch. Introduction to matrix methods in optics. Wiley, 1975.

    Google Scholar 

  13. Andrew Glassner. Surface Physics for Ray Tracing. In Andrew Glassner, editor, An Introduction to Ray Tracing, pages 121–160. Academic Press, 1989.

    Google Scholar 

  14. Joseph Goodman. Statistical Properties of Laser Speckle Patterns. In John Dainty, editor, Laser Speckle and Related Phenomena, volume 9 of Topics in Applied Physics, pages 9–75. Springer, 1975.

    Google Scholar 

  15. Roland Grisar. Sources for Optical Sensing. In E. Wagner, R. Dändliker, and K. Spenner, editors, Optical Sensors, volume 6 of Sensors, pages 117–142. VCH, 1992.

    Google Scholar 

  16. Tobias Haist. Optische Phänomene in Natur und Alltag. http://www.optipina.de, 2010.

  17. Oliver Heavens. Thin film physics. Methuen, 1970.

    Google Scholar 

  18. Oliver Heavens and Robert Ditchburn. Insight into optics. Wiley, 1991.

    Google Scholar 

  19. Eugene Hecht. Note on an Operational Definition of the Stokes Parameters. American Journal of Physics, 38(9):1156–1158, September 1970.

    Article  Google Scholar 

  20. Eugene Hecht. Optics. Addison-Wesley, San Francisco, 4th edition, 2002.

    Google Scholar 

  21. Hans-Jürgen Hentschel, editor. Licht und Beleuchtung: Grundlagen und Anwendungen der Lichttechnik. Hüthig, 5th edition, 2002.

    Google Scholar 

  22. R. Holm. Convention Confusions. In Edward Palik, editor, Handbook of Optical Constants of Solids, volume 2nd, pages 21–55. Academic Press, 1991.

    Google Scholar 

  23. Bernd Jähne. Practical handbook on image processing for scientific and technical applications. CRC Press, 2nd edition, 2004.

    Google Scholar 

  24. Robert Jones and Catherine Wykes. Holographic and speckle interferometry. Cambridge University Press, 2nd edition, 1989.

    Google Scholar 

  25. Dietrich Kühlke. Optik: Grundlagen und Anwendungen. Deutsch, Frankfurt am Main, 2nd edition, 2007.

    Google Scholar 

  26. Hans-Jörg Kull. Laserphysik: Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie. Oldenbourg, 2010.

    Google Scholar 

  27. Ulrich Neuschaefer-Rube. Optische Oberflächenmesstechnik für Topografie und Material. Habilitationsschrift, Universität Gesamthochschule Kassel, 2002.

    Google Scholar 

  28. Bahaa Saleh and Malvin Teich. Fundamentals of photonics. Wiley, 2nd edition, 2007.

    Google Scholar 

  29. Eugen Schäfer. Technische Optik. Vieweg, 1997.

    Google Scholar 

  30. Gottfried Schröder and Hanskarl Treiber. Technische Optik. Vogel, Würzburg, 9th edition, 2002.

    Google Scholar 

  31. William Shurcliff. Polarized light: production and use. Harvard University Press, 1962.

    Google Scholar 

  32. Károly Simonyi. Foundations of electrical engineering, volume 3: Fields–Networks–Waves. Pergamon Press, 1963.

    Google Scholar 

  33. Alma Taylor. Illumination Fundamentals. Rensselaer Lighting Research Center, 2000.

    Google Scholar 

  34. Harland Tompkins and Eugene Irene, editors. Handbook of ellipsometry. Andrew, 2005.

    Google Scholar 

  35. Harland Tompkins and William McGahan. Spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, 1999.

    Google Scholar 

  36. Hans Völz. Industrial color testing. VCH, 1995.

    Google Scholar 

  37. Volker Wittwer. Solarenergie. In Hans-Jörg Bullinger, editor, Technologieführer: Grundlagen, Anwendungen, Trends, pages 350–355. Springer, 2007.

    Google Scholar 

  38. Lawrence Wolff. Polarization-Based Material Classification from Specular Reflection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(11):1059–1071, November 1990.

    Article  Google Scholar 

  39. Günter Wyszecki and Walter Stiles. Color Science. Wiley, 2nd edition, 2000.

    Google Scholar 

  40. Amnon Yariv. Quantum electronics. Wiley, 3rd edition, 1989.

    Google Scholar 

  41. Wolfgang Zinth and Ursula Zinth. Optik: Lichtstrahlen – Wellen – Photonen. Oldenbourg, München, 4th edition, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Beyerer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyerer, J., Puente León, F., Frese, C. (2016). Light. In: Machine Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47794-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47794-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47793-9

  • Online ISBN: 978-3-662-47794-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics