Skip to main content

Regional Perfusion and Glucose Uptake Determination with 11C-Methyl-Glucose and Dynamic Positron Emission Tomography

  • Chapter
Positron Emission Tomography of the Brain

Abstract

Recent studies have emphasized that quantitative assessment of different brain disorders may require the knowledge of at least two parameters. One is local perfusion, and the second should relate to tissue metabolism, for example to the glucose utilization rate (Sokoloff et al. 1977; Phelps et al. 1979) or the local unidirectional glucose transport rate (LUGTR) (Vyska et al. 1981, 1982; Heiss et al. 1981). All of these parameters may be determined by PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachelard HS (1971) Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex. J Neurochem 18: 213–222

    Article  PubMed  CAS  Google Scholar 

  2. Betz LA, Gilboe DD, Yudilevich DL et al. (1973) Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol 225: 586–592

    PubMed  CAS  Google Scholar 

  3. Betz AL, Gilboe DD, Drewes LR (1974) Effects of anoxia on net uptake and unidirectional transport of glucose into the isolated dog brain. Brain Res 67: 307–316

    Article  PubMed  CAS  Google Scholar 

  4. Bidder TG (1968) Hexose translation across the blood-brain interface: configurational aspects. J Neurochem 15: 867–874

    Article  PubMed  CAS  Google Scholar 

  5. Czaky TZ, Wilson JE (1956) The fate of 3-O74CH3-glucose in the rat. Biochim Biophys Acta 22: 185–186

    Article  Google Scholar 

  6. Heiss WD, Vyska K, Kloster G et al. (1982) Demonstration of decreased functional activity of visual cortex by [“C]methylglucose and PET. Neuroradiology 23: 45–47

    Article  PubMed  CAS  Google Scholar 

  7. Heiss WD, Kloster G, Vyska K et al. (1981) Regional cerebral distribution of 11CMG compared with CT perfusion patterns in stroke. J Cereb Blood Flow Metabol 1, Suppl 1: 506–507

    Google Scholar 

  8. Hinzen DH, Müller V, Sobotka Pet al. (1972) Metabolism and function of dogs brain recovering from longtime ischemia. Am J Physiol 223: 1158–1164

    PubMed  CAS  Google Scholar 

  9. Ingvar DA, Cronquist S, Ekberg R et al. (1965) Normal values of regional cerebral blood flow in man including flow and weight estimates of gray and white matter. Acta Neur Scand 41, Suppl 14: 72–84

    CAS  Google Scholar 

  10. Kennedy C, Sakurada O, Shinohara M et al. (1978) Local cerebral glucose utilisation in the normal conscious macaque monkey. Ann Neurol 4: 293–301

    Article  PubMed  CAS  Google Scholar 

  11. Kloster G, Müller-Platz C, Laufer P (1981) 3–11CMethyl-D-Glucose a potential agent for regional cerebral glucose utilisation. J Lab Comp Radiopharm 18: 855–863

    Google Scholar 

  12. Lund-Andersen H, Kjeldsen CS (1976) Kinetical analysis of the uptake of glucose analogs by rat brain cortex slices from normal and ischemic brain. In: Levi G, Battistin L, Lajtha A (eds) Transport phenomena in the nervous system. Plenum, New York London, 265–272

    Google Scholar 

  13. Narahara HT, Ozand P, Cori CF (1960) Studies of tissue permeability. J Biol Chem 235: 3370–3378

    PubMed  CAS  Google Scholar 

  14. Obrist WD, Thompson HK, King CH et al. (1967) Determination of regional cerebral blood flow by inhalation of 133 Xenon. Circ Res 20: 124–135

    PubMed  CAS  Google Scholar 

  15. Pardridge WM, Oldendorf WH (1975) Kinetics of blood brain barrier transport of hexoses. Biochim Biophys Acta 382: 377–392

    Article  PubMed  CAS  Google Scholar 

  16. Phelps ME, Huang SC, Hoffman EJ et al. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with FDG. Ann Neurol 6: 371–388

    Article  PubMed  CAS  Google Scholar 

  17. Phelps ME, Kuhl DE, Mazziotta JC (1981) Metabolic mapping of the brain’s response to visual stimulation. Science 211: 1445–1448

    Article  PubMed  CAS  Google Scholar 

  18. Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function. J Cereb Blood Flow Metabol 2: 113–162

    Article  CAS  Google Scholar 

  19. Reivich M, Greenberg J, Alavi A (1979) The use of fluorodeoxy-glucose technique for mapping of functional neural pathways in man. Acta Neurol Scand 60, Suppl 72: 198–199

    Google Scholar 

  20. Sokoloff L, Reivich M, Kennedy C et al. (1977) The ‘4C deoxyglucose method for the measurement of local cerebral glucose utilisation. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  21. Vyska K, Freundlieb C, Hock A et al. (1981) The measurement of glucose transport across the blood brain barrier in man by use of CMG. J Cereb Blood Flow Metabol 1, Suppl 1: 42–43

    Google Scholar 

  22. Vyska K, Freundlieb C, Höck A et al. (1982) Analysis of LPR and LUGTR in brain and heart in man by means of CMG and dPET. In: Höfer R, Bergmann H (eds) Radioaktive Isotope in Klinik und Forschung. Verlag H. Egermann, 15: 129–142

    Google Scholar 

  23. Whitfield CF, Rames RS, Morgan HE (1974) Acceleration of sugar transport in avian erythrocytes by catecholamines. J Biol Chem 249: 4181–4188

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vyska, K. et al. (1983). Regional Perfusion and Glucose Uptake Determination with 11C-Methyl-Glucose and Dynamic Positron Emission Tomography. In: Heiss, WD., Phelps, M.E. (eds) Positron Emission Tomography of the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95428-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95428-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12130-5

  • Online ISBN: 978-3-642-95428-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics