Skip to main content

Shapes, Surfaces, and Interfaces in Percolation Clusters

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 5))

Abstract

Percolation theory is reviewed. Intuitive arguments are given to derive scaling and hyperscaling relations. Above six dimensions the breakdown of hyperscaling is related to the interpenetration of the critical large clusters, and to the appearence at p c of an infinite number of infinite clusters of zero density with fractal dimension d f = 4. The structure of the percolating cluster made of links and blobs is characterized by an infinite set of exponents related to the anomalous voltage distribution in a random resistor network at p c . The surface structure of critical clusters below pc, which is relevant to the study of random superconducting networks, is also discussed. In particular, an exact result is presented which shows that in any dimension the interface of two critical clusters diverge as (p c -p)-1 as the percolation threshold is approached.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Stauffer, Phys. Rep. 54, 1 (1977).

    Article  ADS  Google Scholar 

  2. J. W. Essam, Rep. Prog. Phys. 43, 833 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  3. For review on percolation and gelation see, e.g., D. Stauffer, A. Coniglio and M. Adam, Adv. Poly. Sci. 44, 103 (1982).

    Article  Google Scholar 

  4. S. R. Broadbent and J. M. Hammersley, Proc. Camb. Philos. Soc. 53, 624 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Kirkpatrick, Rev. Mod. Phys. 45, 576 (1973).

    Article  ADS  Google Scholar 

  6. J. P. Straley, J. Phys. C 9, 783 (1976); see also review article in Ref. [7].

    Article  ADS  Google Scholar 

  7. “Percolation Structure and Processes,” eds. G. Deutscher, R. Zallen, and J. Adler, Annals of the Israel Physical Society, Vol. 5 (Hilger: Bristol, 1983).

    Google Scholar 

  8. See, e.g., H. E. Stanley, Phase Transitions and Critical Phenomena (New York: Oxford University Press, 1971).

    Google Scholar 

  9. B. B. Mandelbrot, Form, Chance and Dimension (San Francisco: Freeman, 1977).

    MATH  Google Scholar 

  10. P. J. Flory, J. Am. Chem. Soc. 63, 3083 (1961).

    Article  Google Scholar 

  11. M. E. Fisher and J. Essam, J. Math. Phys. 2, 609 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. B. Harris, T. C. Lubensky, W. Holcomb and C. Dasgupta, Phys. Rev. Lett. 35, 327 (1975).

    Article  ADS  Google Scholar 

  13. A. Aharony, Y. Gefen and A. Kapitulnik, J. Phys. A 17, L197 (1984).

    ADS  MathSciNet  Google Scholar 

  14. S. Alexander, G. S. Grest, H. Nakanishi and T. A. Witten, Jr., J. Phys. A 17, L185 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  15. H. E. Stanley, J. Phys. A 10, L211 (1977).

    Article  ADS  Google Scholar 

  16. A. S. Skal and B. I. Shklovskii, Sov. Phys. Semicond. 8, 1029 (1975).

    Google Scholar 

  17. P. G. de Gennes, La Recherche 7, 919 (1976).

    Google Scholar 

  18. Y. Gefen, A. Aharony and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).

    Article  ADS  Google Scholar 

  19. A. Coniglio, Phys. Rev. Lett. 46, 250 (1981);

    Article  ADS  Google Scholar 

  20. A. Coniglio, J. Phys. A 15, 3824 (1982).

    ADS  Google Scholar 

  21. R. Pike and H. E. Stanley, J. Phys. A 14, L169 (1981).

    Article  ADS  Google Scholar 

  22. H. J. Herrmann and H. E. Stanley, Phys. Rev. Lett. 53, 1121 (1984).

    Article  ADS  Google Scholar 

  23. A. Coniglio, in Proceedings of Erice School on Ferromagnetic Transitions (Springer-Verlag, 1983).

    Google Scholar 

  24. A. B. Harris, S. Kim and T. C. Lubensky, Phys. Rev. Lett. 53, 743 (1984).

    Article  ADS  Google Scholar 

  25. L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B 31, 4725 (1985).

    Article  ADS  Google Scholar 

  26. A. Coniglio (to be published).

    Google Scholar 

  27. P. J. Reynolds, H. E. Stanley and W. Klein, Phys. Rev. B 21, 1223 (1980).

    Article  ADS  Google Scholar 

  28. While at this Conference, S. Redner and I showed on some finite self dual lattices the following result \({\left\langle {\frac{{\sum {n\left( v \right){V^K}} }}{{{{\left[ {\sum {n\left( v \right){V^2}} } \right]}^K}}}} \right\rangle _p} = {\left\langle {\sum {n'\left( v \right){V^K}} } \right\rangle _{1 - p}},\) where n(v) is the voltage distribution in the random resister network problem and n’(v) is the voltage distribution in the random superconducting network. The first average is made over all bond configurations for fixed p and the second for bond probability 1 – p. Although we did not prove this relation for any self dual lattices we believe that this should be true and therefore valid for the square lattice. The above relation gives for the square lattice Z̃(K) = ζ̃(K), which checks for K = 2 and K = ∞.

    Google Scholar 

  29. C. Mitescu and J. Roussenq in Ref. [7].

    Google Scholar 

  30. Y. Gefen, A. Aharony and S. Alexander, Phys. Rev. Lett. 53, 77 (1983).

    Article  ADS  Google Scholar 

  31. D. Ben Avraham and S. Havlin, J. Phys. A 15, L691 (1982).

    Article  Google Scholar 

  32. R. B. Pandey, D. Stauffer, A. Margolina and J. G. Zabolitzky, J. Stat. Phys. 34, 427 (1984).

    Article  MATH  ADS  Google Scholar 

  33. P. G. de Gennes, J. Phys. (Paris) Colloq. 41, C3 (1980).

    Google Scholar 

  34. A. Coniglio and H. E. Stanley, Phys. Rev. Lett. 52, 1068 (1984).

    Article  ADS  Google Scholar 

  35. A. Bunde, A. Coniglio, D. Hong and H. E. Stanley, J. Phys. A 18, L137 (1985).

    Article  ADS  Google Scholar 

  36. J. Adler, A. Aharony and D. Stauffer, J. Phys. A 18, L129 (1985).

    Article  ADS  Google Scholar 

  37. J. Kertesz, J. Phys. A 16, L471 (1983).

    Article  ADS  Google Scholar 

  38. D. Hong et al (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coniglio, A. (1985). Shapes, Surfaces, and Interfaces in Percolation Clusters. In: Boccara, N., Daoud, M. (eds) Physics of Finely Divided Matter. Springer Proceedings in Physics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93301-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93301-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93303-5

  • Online ISBN: 978-3-642-93301-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics