Skip to main content

Molecular Characterization of Transformed Plants

  • Chapter
Book cover Plant Molecular Biology — A Laboratory Manual

Part of the book series: Springer ((SLM))

Abstract

The generation of genetically transformed plants is central to, and has indeed revolutionized, plant molecular biology. This is true for studies at both the fundamental and more applied levels of research. For researchers interested in unravelling the roles of specific genes in particular pathways of growth and development, the introduction into plants of foreign genes and gene promoters linked to reporter genes allows the detailed study of the temporal, spatial and quantitative expression of plant genes and the activities of associated regulatory sequences. In our own laboratory, we use these techniques in a programme of insertional mutagenesis to identify developmentally interesting genes (Topping et al. 1991; Lindsey et al. 1993; Topping et al. 1994). In the more applied area of genetic engineering, which is directed towards crop improvement, the introduction of novel genes encoding, for example, resistance to various pests and herbicides into economically important species, is in the long term likely to develop into a major branch of the plant breeding industry (Lindsey 1992). There are several well-characterized and very successful methods which are currently being employed to introduce specific genes and gene regulatory sequences into plants and these are described in Chapter 8 of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chinault AC, Blakesley VA, Roessler E, Willis DG, Smith CA, Cook RG, Fenwick RG (1986) Characterization of transferable plasmids from Shigella flex-neri 2A that confers resistance to trimethoprim, streptomycin and sulfonamides. Plasmid 15:119–131

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    PubMed  CAS  Google Scholar 

  • D’Halluin K, Bossut M, Bonne E, Mazur B, Leemans J, Botterman J (1992) Transformation of sugarbeet {Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Bio/Technology 10:309–314

    Article  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606

    Article  PubMed  CAS  Google Scholar 

  • Helmer G, Casadaban M, Bevan MW, Kayes L, Chilton MD (1984) A new chimeric gene as a marker for plant transformation: the expression of Es-cherichia coli ß-galactosidase in sunflower and tobacco cells. Bio/Technology 2:520–527

    Article  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3301–3307

    Google Scholar 

  • Jones JDG, Svab Z, Harper EC, Hurwitz CD, Maliga P (1987) A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol Gen Genet 210:86–91

    Article  CAS  Google Scholar 

  • Jorgensen R (1990) Altered gene expression in plants due to trans-interactions between homologous genes. Trends Biotechnol 8:340–344

    Article  PubMed  CAS  Google Scholar 

  • Kirchner G, Kinslow CJ, Bloom GC, Taylor DW (1993) Nonlethal assay system of ß-glucuronidase activity in transgenic roots of tobacco. Plant Mol Biol Rep 11:320–325

    Article  CAS  Google Scholar 

  • Lindsey K (1992) Genetic manipulation of crop plants. J Biotechnol 26:1–28

    Article  CAS  Google Scholar 

  • Lindsey K, Jones MGK (1987) Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Mol Biol 10:43–52

    Article  CAS  Google Scholar 

  • Lindsey K, Wei W, Clarke MC, McArdle HF, Rooke LM, Topping JF (1993) Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res 2:33–47

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas JP, Hamilton DA (1992) Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV 35S-GUS construct. Plant J 2:405–408

    Article  CAS  Google Scholar 

  • Matzke MA, Primig M, Trnovsky J, Matzke AJM (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649

    PubMed  CAS  Google Scholar 

  • Nagy F, Odell JT, Morelli G, Chua N-H (1985) Properties of expression of the 35S promoter from CaMV in transgenic tobacco plants. In: Zaitlin M, Day P, Hollaender A (eds) Biotechnology in plant science: relevance to agriculture in the eighties. Academic Press, Orlando, pp 227–235

    Chapter  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, De Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    Article  PubMed  CAS  Google Scholar 

  • Pridmore RD (1987) New and versatile cloning vectors with kanamycin-resistance marker. Gene 56:309–312

    Article  PubMed  CAS  Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) A new and sensitive method for quantitative and qualitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30:211–218

    Article  PubMed  CAS  Google Scholar 

  • Reynaerts A, De Block M, Hernalsteens J-P, van Montagu M (1988) Selectable and screenable markers. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht A9.T-16

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Turner NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Frayley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481

    Article  PubMed  CAS  Google Scholar 

  • Stomp A-M (1990) Use of X-Gluc for histochemical localisation of glucuronidase. In: Editorial comments. United State Biochemical, Cleveland, p 5

    Google Scholar 

  • Topping JF, Wei W, Lindsey K (1991) Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019

    PubMed  CAS  Google Scholar 

  • Topping JF, Agyeman F, Henricot B, Lindsey K (1994) Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping. Plant J 5:895–903

    Article  PubMed  CAS  Google Scholar 

  • Twell D, Klein TM, Fromm ME, McCormick S (1989) Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol 91:1270–1274

    Article  PubMed  CAS  Google Scholar 

  • Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5:299–302

    Article  Google Scholar 

  • Wilkinson JE, Twell D, Lindsey K (1994) Methanol does not specifically inhibit endogenous ß-glucuronidase (GUS) activity. Plant Sci 97:61–67

    Article  CAS  Google Scholar 

  • Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Pühler A (1988) Nucleotide sequence of the phosphinothricine N-acetyltransferase gene from Streptomyces viridochromogenes Tu 494 and its expression in Nicotiana ta-bacum. Gene 70:25–37

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Topping, J.F., Lindsey, K. (1997). Molecular Characterization of Transformed Plants. In: Clark, M.S. (eds) Plant Molecular Biology — A Laboratory Manual. Springer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87873-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87873-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49144-3

  • Online ISBN: 978-3-642-87873-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics