Skip to main content

Immunodetection of Phytochrome: Immunocytochemistry, Immunoblotting, and Immunoquantitation

  • Chapter
Immunology in Plant Sciences

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 4))

Abstract

Although as recently as 10 to 15 years ago plant scientists seldom made use of antibodies as research tools, that is no longer the case. Antibodies are quickly becoming indispensible for many purposes, including one-step purification of antigens, their visualization in situ by immunocytochemistry and on nitrocellulose blots of polyacrylamide gels, and their quantitation by radioimmunoassay or enzyme immunoassay. The relatively recent development of monoclonal antibodies produced by hybridoma technology (Köhler and Milstein 1975; see Coding 1983 for thorough treatment) expands the utility of antibodies as research tools by at least an order of magnitude. Whereas a typical antiserum, which is conveniently referred to as a polyclonal antibody preparation, can be specific for a given antigen, a monoclonal antibody is specific for a given domain, known as an antigenic determinant or epitope, on that antigen. Consequently, while polyclonal antibodies provide information about the location or quantity of an antigen, a monoclonal antibody provides information about the location or quantity of a small portion of that antigen. Furthermore, a panel of monoclonal antibodies directed to a single, complex antigen, such as a protein, can be used to dissect that antigen and to identify its structure-function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

Ig:

immunoglobulin

kD:

kilodalton

PAGE:

polyacrylamide gel electrophoresis

PBS:

10 mM sodium phosphate, 140 mM NaC1, pH 7.4

Pr and Pfr:

phytochrome in the red- and far-red-absorbing forms, respectively

SDS:

sodium dodecyl sulfate

References

  • Belanger L, Sylvestre C, Dufour D (1973) Enzyme-linked immunoassay for alpha-fetoprotein by competitive and sandwich procedures. Clin Chim Acta 48: 15–18

    Article  PubMed  CAS  Google Scholar 

  • Blake MS, Johnston KH, Russell-Jones GJ, Gotschlich EC (1984) A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Siegelman HW (1965) Distribution of phytochrome in etiolated seedlings. Plant Physiol (Bethesda) 40: 934–941

    Article  CAS  Google Scholar 

  • Bullock GR, Petrusz P (eds) (1982) Techniques in immunocytochemistry, Vol 1. Academic Press, London, 306 pp

    Google Scholar 

  • Coleman RA, Pratt LH (1974) Subcellular localization of the red-absorbing form of phytochrome by immunocytochemistry. Planta (Berl) 121: 119–131

    Article  CAS  Google Scholar 

  • Cordonnier M-M, Smith C, Greppin H, Pratt LH (1983) Production and purification of monoclonal antibodies to Pisum and Avena phytochrome. Planta (Berl) 158: 369–376

    Article  CAS  Google Scholar 

  • Cordonnier M-M, Greppin H, Pratt LH (1985) Monoclonal antibodies with differing affinities to the red-absorbing and far-red-absorbing forms of phytochrome. Biochemistry 24: 3246–3253

    Article  CAS  Google Scholar 

  • Cordonnier M-M, Greppin H, Pratt LH (1986) Identification of a highly conserved domain on phytochrome from angiosperms to algae. Plant Physiol (Bethesda) 80: 982–987

    Article  CAS  Google Scholar 

  • Daniels SM, Quail PH (1984) Monoclonal antibodies to three separate domains on 124 kilodalton phytochrome from Avena. Plant Physiol (Bethesda) 76: 622–626

    Article  CAS  Google Scholar 

  • Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay for immunoglobulin G. Immunochemistry 8: 871–874

    Article  PubMed  CAS  Google Scholar 

  • Gershoni JM (1985) Protein blotting: developments and perspectives. Trends Biochem Sci 10: 103–106

    Article  CAS  Google Scholar 

  • Gershon JM, Palade GE (1983) Protein blotting: principles and applications. Anal Biochem 131: 1–15

    Article  Google Scholar 

  • Giloh H, Sedat JW (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217: 1252–1255

    Article  PubMed  CAS  Google Scholar 

  • Goding JW (1983) Monoclonal antibodies: principles and practice. Academic Press, London, 276 pp

    Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497

    Article  PubMed  Google Scholar 

  • Knox RB, Vithanage HIMV, Howlett BJ (1980) Botanical immunocytochemistry: a review with special reference to pollen antigens and allergens. Histochem J 12: 247–272

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Kasamatsu H (1983) On the electrotransfer of polypeptides from gels to nitrocellulose membranes. Anal Biochem 128: 302–311

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie JM Jr, Coleman RA, Briggs WR, Pratt LH (1975) Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc Natl Acad Sci USA 72: 799–803

    Article  PubMed  Google Scholar 

  • McCurdy DW, Pratt LH (1986) Kinetics of intracellular redistribution of phytochrome in Avena coleoptiles after its photoconversion to the active, far-red-absorbing form. Planta (Berl) 167: 330–336

    Article  CAS  Google Scholar 

  • Pratt LH (1984a) Phytochrome purification. In: Smith H, Holmes MG (eds) Techniques in photomorphogenesis. Academic Press, London, pp 175–200

    Google Scholar 

  • Pratt LH (1984b) Phytochrome immunochemistry. In: Smith H, Holmes MG (eds) Techniques in photomorphogenesis. Academic Press, London, pp 201–226

    Google Scholar 

  • Pratt LH, Coleman RA (1971) Immunocytochemical localization of phytochrome. Proc Natl Acad Sci USA 68: 2431–2435

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH, Coleman RA (1974) Phytochrome distribution in etiolated grass seedlings as assayed by an indirect antibody-labeling method. Am J Bot 61: 195–202

    Article  CAS  Google Scholar 

  • Raikhel NV, Mishkind ML, Palevitz BA (1984) Characterization of a wheat germ agglutinin-like lectin from adult wheat plants. Planta (Berl) 162: 55–61

    Article  CAS  Google Scholar 

  • Saunders GC (1979) The art of solid-phase enzyme immunoassay including selected protocols. In: Nakamura RM, Dito WR, Tucker III ES (eds) Immunoassays in the clinical laboratory. Liss, New York, pp 99–118

    Google Scholar 

  • Saunders MJ, Cordonnier M-M, Palevitz BA, Pratt LH (1983) Immunofluorescence visualization of phytochrome in Pisum sativum L. epicotyls using monoclonal antibodies. Planta (Berl) 159: 545–553

    Article  CAS  Google Scholar 

  • Schuurs AHWM, Van Weemen BK (1977) Enzyme-immunoassay. Clin Chim Acta 81: 140

    Article  Google Scholar 

  • Shimazaki Y, Cordonnier M-M, Pratt LH (1983) Phytochrome quantitation in crude extracts of Avena by enzyme-linked immunosorbent, assay with monoclonal antibodies. Planta (Berl) 159: 534–544

    Article  CAS  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York, 354 pp

    Google Scholar 

  • Studier FW (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79: 237–248

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1980) Immunochemistry of ultrathin frozen sections. Histochem J 12: 381–403

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Gordon J (1984) Immunoblotting and dot immunobinding–current status and outlook. J Immunol Methods 72: 313–340

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Van Weemen BK, Schuurs AHWM (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15: 232–236

    Article  PubMed  Google Scholar 

  • Voller A, Bidwell D, Bartlett A (1980) Enzyme-linked immunosorbent assay. In: Rose NR, Friedman H (eds) Manual of clinical immunology, 2nd edn. Am Soc Microbiol, Washington DC, pp 359–371

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pratt, L.H., McCurdy, D.W., Shimazaki, Y., Cordonnier, MM. (1986). Immunodetection of Phytochrome: Immunocytochemistry, Immunoblotting, and Immunoquantitation. In: Linskens, HF., Jackson, J.F. (eds) Immunology in Plant Sciences. Modern Methods of Plant Analysis, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82853-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82853-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82855-3

  • Online ISBN: 978-3-642-82853-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics