Skip to main content

DNA Branch Migration

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

Abstract

DNA branch migration involves the exchange of one DNA strand for another by the stepwise breakage and reformation of hydrogen bonds in DNA duplexes. In four-strand branch migration the cross-over point between two duplexes is known as the Holliday junction. If the duplex sequences flanking the Holliday junction are identical, the junction can move in either direction by the exchange of hydrogen bonds between two DNA strands of the same polarity (Fig. 1, top). Branch migration involving three-strand reactions, sometimes referred to as single-strand branch migration, can also occur (Fig. 1, bottom). In both three- and four-strand branch migration, there is no net change in the number of hydrogen bonds. It is, therefore, an isoenergetic process and can occur spontaneously without the need for any exogenous energy source.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer CE, Hesse SD, Gardner JF, Gumport RI (1984) DNA interactions during bacteriophage lambda site-specific recombination. Cold Spring Harbor Symp Quant Biol 49:699–705

    PubMed  CAS  Google Scholar 

  • Benbow RM, Zuccarelli AJ, Sinsheimer RL (1975) Recombinant DNA molecules of bacteriophage PhiX174. Proc Natl Acad Sci USA 72:235–239

    Article  PubMed  CAS  Google Scholar 

  • Berg HC (1983) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Broker TR, Lehman IR (1971) Branched DNA molecules: intermediates in T4 recombination. J Mol Biol 60:131–149

    Article  PubMed  CAS  Google Scholar 

  • Burke-Agüero DH, Hearst JE (1990) An RNA Holliday junction? Structural and dynamic considerations of the bacteriophage T4 gene 60 interruption. J Mol Biol 213:199–201

    Article  PubMed  Google Scholar 

  • Camerini-Otero RD, Hsieh P (1993) Parallel DNA triplexes, homologous recombination, and other homology-dependent DNA interactions. Cell 73:217–223

    Article  PubMed  CAS  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, Oxford, pp 92–132

    Google Scholar 

  • Cassuto E, Radding CM (1971) Mechanism for the action of lambda exonuclease in genetic recombination. Nat New Biol 229:13–16

    PubMed  CAS  Google Scholar 

  • Chen JH, Churchill ME, Tullius TD, Kallenbach NR, Seeman NC (1988) Construction and analysis of monomobile DNA junctions. Biochemistry 27:6032–6038

    Article  PubMed  CAS  Google Scholar 

  • Chen S-M, Heffron F, Leupin W, Chazin WJ (1991) Two-dimensional 1H NMR studies of synthetic immobile Holliday junctions. Biochemistry 30:766–771

    Article  PubMed  CAS  Google Scholar 

  • Chen S-M, Heffron F, Chazin WJ (1993) Two-dimensional 1H NMR studies of 32-base-pair synthetic immobile Holliday junctions: complete assignments of the labile protons and identification of the base-pairing scheme. Biochemistry 32:319–326

    Article  PubMed  CAS  Google Scholar 

  • Churchill ME, Tullius TD, Kallenbach NR, Seeman NC (1988) A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sci USA 85:4653–4656

    Article  PubMed  CAS  Google Scholar 

  • Clegg RM, Murchie AI, Zechel A, Carlberg C, Diekmann S, Lilley DMJ (1992) Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry 31:4846–4856

    Article  PubMed  CAS  Google Scholar 

  • Clegg RM, Murchie AI, Lilley DMJ (1994) The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis. Biophys J 66:99–109

    Article  PubMed  CAS  Google Scholar 

  • Cohen RJ, Crothers DM (1971) Rate of unwinding small DNA. J Mol Biol 61:525–542

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP, Hagerman PJ (1987) Gel electrophoretic analysis of the geometry of a DNA four-way junction. J Mol Biol 198:711–719

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP, Hagerman PJ (1989) Geometry of a branched DNA structure in solution. Proc Natl Acad Sci USA 86:7336–7340

    Article  PubMed  CAS  Google Scholar 

  • Courey AJ, Wang JC (1983) Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions. Cell 38:817–829

    Article  Google Scholar 

  • Cowart M, Benkovic SJ, Nash HA (1991) Behavior of a cross-linked attachment site: testing the role of branch migration in site-specific recombination. J Mol Biol 220:621–629

    Article  PubMed  CAS  Google Scholar 

  • Duckett DR, Lilley DMJ (1991) Effects of base mismatches on the structure of the four-way DNA junction. J Mol Biol 221:147–161

    Article  PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AI, Diekmann S, von Kitzing E, Kemper B, Lilley DMJ (1988) The structure of the Holliday junction, and its resolution. Cell 55:79–89

    Article  PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AI, Lilley DMJ (1990) The role of metal ions in the conformation of the four-way DNA junction. EMBO J 9:583–590

    PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AIH, Bhattacharyya A, Clegg RM, Diekmann S, von Kitzing E, Lilley DMJ (1992) The structure of DNA junctions and their interaction with enzymes. Eur J Biochem 207:285–295

    Article  CAS  Google Scholar 

  • Eis PS, Millar DP (1993) Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer. Biochemistry 32:13852–13860

    Article  PubMed  CAS  Google Scholar 

  • Fox MS, Dudney CS, Sodergren EJ (1979) Heteroduplex regions in unduplicated bacteriophage recombinants. Cold Spring Harbor Symp Quant Biol 43:999–1007

    PubMed  CAS  Google Scholar 

  • Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32:3211–3220

    Article  PubMed  CAS  Google Scholar 

  • Fu TJ, Tse DY, Seeman NC (1994) Holliday junction crossover topology. J Mol Biol 236:91–105

    Article  PubMed  CAS  Google Scholar 

  • Geliert M, O’Dea MH, Mizuuchi K (1983) Slow cruciform transitions in palindromic DNA. Proc Natl Acad Sci USA 80:5545–5549

    Article  Google Scholar 

  • Gierer A (1966) Model for DNA and protein interactions and the function of the operator. Nature 212:1480–1481

    Article  PubMed  CAS  Google Scholar 

  • Gough GW, Lilley DMJ (1985) DNA bending induced by cruciform formation. Nature 313:154–156

    Article  PubMed  CAS  Google Scholar 

  • Green C, Tibbetts C (1981) Reassociation rate limited displacement of DNA strands by branch migration. Nucleic Acids Res 9:1905–1918

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Lu M, Kallenbach NR (1991) Conformational preference and ligand binding properties of DNA junctions are determined by sequence at the branch. Biopolymers 31:359–372

    Article  PubMed  CAS  Google Scholar 

  • Haber JE (1992) Exploring the pathways of homologous recombination. Curr Opin Cell Biol 4:401–412

    Article  PubMed  CAS  Google Scholar 

  • Hoess RH, Wiezbicki A, Abremski K (1987) Isolation and characterization of intermediates in site-specific recombination. Proc Natl Acad Sci USA 84:6840–6844

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res Camb 5:282–304

    Article  Google Scholar 

  • Hsieh T-S, Wang JC (1975) Thermodynamic properties of superhelical DNAs. Biochemistry 14:527–535

    Article  PubMed  CAS  Google Scholar 

  • Hsu PL, Landy A (1984) Resolution of synthetic att-site Holliday structures by the integrase protein of bacteriophage lambda. Nature 311:721–726

    Article  PubMed  CAS  Google Scholar 

  • Jayaram M, Crain KL, Parson RL, Harshey RM (1988) Holliday junctions in FLP recombination: resolution by step-arrest mutants of FLP protein. Proc Natl Acad Sci USA 85:7902–7906

    Article  PubMed  CAS  Google Scholar 

  • Johnson RD, Symington LS (1993) Cross-stranded DNA structures for investigating the molecular dynamics of the Holliday junction. J Mol Biol 229:812–820

    Article  PubMed  CAS  Google Scholar 

  • Kallenbach NR, Zhong M (1994) DNA cruciforms. Curr Opin Struct Biol 4:365–371

    Article  CAS  Google Scholar 

  • Kallenbach NR, Ma RI, Seeman NC (1983) An immobile nucleic acid junction constructed from oligonucleotides. Nature 305:829–831

    Article  CAS  Google Scholar 

  • Kim J-S, Sharp PA, Davidson N (1972) Electron microscope studies of heteroduplex DNA from a deletion mutant of bacteriophage PhiX-174. Proc Natl Acad Sci USA 69:1948–1952

    Article  PubMed  CAS  Google Scholar 

  • Kimball A, Guo Q et al. (1990) Construction and analysis of parallel and antiparallel Holliday junctions. J Biol Chem 265:6544–6547

    PubMed  CAS  Google Scholar 

  • Kitts PA, Nash HA (1987) Homology-dependent interactions in phage lambda sitespecific recombination. Nature 329:346–348

    Article  PubMed  CAS  Google Scholar 

  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Bichemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465

    PubMed  CAS  Google Scholar 

  • Lee CSL, Davis RW, Davidson N (1970) A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J Mol Biol 48:1–22

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ (1980) The inverted repeat as a recognizable structural feature in supercoiled DNA. Proc Natl Acad Sci USA 77:6468–6472

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ (1985) The kinetic properties of cruciform extrusion are determined by DNA base-sequence. Nucleic Acids Res 13:1443–1465

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ, Clegg RM (1993) The structure of the four-way junction in DNA. Annu Rev Biophys Biomol Struct 22:299–328

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ, Kemper B (1984) Cruciform-resolvase interactions in supercoiled DNA. Cell 36:413–422

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ, Sullivan KM, Murchie AIH, Furlong JC (1990) Cruciform extrusion in supercoiled DNA — mechanisms and contextual influence. In: Wells RD, Harvey SC (eds) Unusual DNA Structures. Springer, Berlin Heidelberg New York, pp 55–72

    Google Scholar 

  • Lipanov A, Kopka ML, Kaczor-Grzeskowiak M, Quintana J, Dickerson RE (1993) Structure of the B-DNA decamer C-C-A-A-C-I-T-T-G-G in two different space groups: conformational flexibility of B-DNA. Biochemistry 32:1373–1389

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Guo Q, Wink DJ, Kallenbach NR (1990) Charge dependence of Fe(II) catalyzed DNA cleavage. Nucleic Acids Res 18:3333–3337

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Guo Q, Seeman NC, Kallenbach NR (1991) Parallel and antiparallel Holliday junctions differ in structure and stability. J Mol Biol 221:1419–1432

    PubMed  CAS  Google Scholar 

  • Meselson M (1972) Formation of hybrid DNA by rotary diffusion during genetic recombination. J Mol Biol 71:795–798

    Article  PubMed  CAS  Google Scholar 

  • Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72:358–361

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K, Kemper B, Hayes J, Weisberg RA (1982a) T4 endonuclease VII cleaves Holliday structures. Cell 29:357–365

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K, Mizuuchi M, Geliert M (1982b) Cruciform structures in palindromic DNA are favored by DNA supercoiling. J Mol Biol 156:229–243

    Article  PubMed  CAS  Google Scholar 

  • Møllegaard NE, Murchie AIH, Lilley DMJ, Nielsen PE (1994) Uranyl photoprobing of a four-way DNA junction: evidence for specific metal ion binding. EMBO J 13:1508–1513

    PubMed  Google Scholar 

  • Müller B, Burdett I, West SC (1992) Unusual stability of recombination intermediates made by Escherichia coli RecA protein. EMBOJ 11:2685–2693

    Google Scholar 

  • Murchie AI, Carter WA, Portugal J, Lilley DMJ (1990) The tertiary structure of the four-way DNA junction affords protection against DNase I cleavage. Nucleic Acids Res 18:2599–2606

    Article  PubMed  CAS  Google Scholar 

  • Murchie AI, Clegg RM, von Kitzing E, Duckett DR, Diekmann S, Lilley DMJ (1989) Fluorescence energy transfer shows that the four-way DNA junction is a righthanded cross of antiparallel molecules. Nature 341:763–766

    Article  PubMed  CAS  Google Scholar 

  • Nünes-Duby SE, Matsumoto L, Landy A (1987) Site-specific recombination intermediates trapped with suicide substrates. Cell 50:779–788

    Article  PubMed  Google Scholar 

  • Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289:466–470

    Article  PubMed  CAS  Google Scholar 

  • Panyutin I, Klishko V, Lyamichev V (1984) Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA. J Biomol Struct Dyn 1:1311–1324

    PubMed  CAS  Google Scholar 

  • Panyutin IG, Hsieh P (1993) Formation of a single base mismatch impedes spontaneous DNA branch migration. J Mol Biol 230:413–424

    Article  PubMed  CAS  Google Scholar 

  • Panyutin IG, Hsieh P (1994) The kinetics of spontaneous DNA branch migration. Proc Natl Acad Sci USA 91:2021–2025

    Article  PubMed  CAS  Google Scholar 

  • Panyutin IG, Biswas I, Hsieh P (1995) A pivotal role for the structure of the Holliday junction in DNA branch migration. EMBO J (in press)

    Google Scholar 

  • Platt JR (1955) Possible separation of intertwined nucleic acid chains by transfertwist. Proc Natl Acad Sci USA 41:181–183

    Article  PubMed  CAS  Google Scholar 

  • Pöhler JR, Duckett DR, Lilley DMJ (1994) Structure of four-way DNA junctions containing a nick in one strand. J Mol Biol 238:62–74

    Article  PubMed  Google Scholar 

  • Radding CM, Beattie KL, Holloman WK, Wiegand RC (1977) Uptake of homologous single-stranded fragments by superhelical DNA. IV. Branch migration. J Mol Biol 116:825–839

    CAS  Google Scholar 

  • Robinson BH, Seeman NC (1987) Simulation of double-stranded branch point migration. Biophys J 51:611–626

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC, Kallenbach NR (1994) DNA branched junctions. Annu Rev Biophys Biomol Struct 23:53–86

    Article  PubMed  CAS  Google Scholar 

  • Sigal N, Alberts B (1972) Genetic recombination: the nature of a crossed strand exchange between two homologous DNA molecules. J Mol Biol 71:789–793

    Article  PubMed  CAS  Google Scholar 

  • Sinden RR, Pettijohn DE (1984) Cruciform transitions in DNA. J Biol Chem 259:6593–6600

    PubMed  CAS  Google Scholar 

  • Sobell HM (1972) Molecular mechanism for genetic recombination. Proc Natl Acad Sci USA 69:2483–2487

    Article  PubMed  CAS  Google Scholar 

  • Sobell HM (1974) Concerning the stereochemistry of strand equivalence in genetic recombination. In: Grell RF (ed) Mechanisms in recombination. Plenum Publishing, New York, pp 433–438

    Google Scholar 

  • Steitz JA (1992) Splicing takes a holliday. Science 257:888–889

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KM, Lilley DMJ (1987) Influence of cation size and charge on the extrusion of a salt-dependent cruciform. J Mol Biol 193:397–404

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strandbreak repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • Thompson BJ, Escarmis C et al. (1975) Figure-8 configuration of dimers of S13 and PhiX174 replicative form DNA. J Mol Biol 91:409–419

    Article  PubMed  CAS  Google Scholar 

  • Thompson BJ, Camien MN, Warner RC (1976) Kinetics of branch migration in double-stranded DNA. Proc Natl Acad Sci USA 73:2299–2303

    Article  PubMed  CAS  Google Scholar 

  • Timsit Y, Moras D (1991) Groove-backbone interaction in B-DNA. Implication for DNA condensation and recombination. J Mol Biol 221:919–940

    Article  PubMed  CAS  Google Scholar 

  • Vologodskii AV, Frank-Kamenetskii MD (1983) The relaxation time for a cruciform structure in superhelical DNA. FEBS Lett 160:173–176

    Article  PubMed  CAS  Google Scholar 

  • von Kitzing E, Lilley DMJ, Diekmann S (1990) The stereochemistry of a four-way DNA junction: a theoretical study. Nucleic Acids Res 18:2671–2683

    Article  Google Scholar 

  • Warner RC, Fishel RA, Wheeler FC (1979) Branch migration in recombination. Cold Spring Harbor Symp Quant Biol 43:957–968

    PubMed  CAS  Google Scholar 

  • Weisberg RA, Enquist LW, Foeller C, Landy A (1983) Role of DNA homology in site-specific recombination. The isolation and characterization of a site affinity mutant of coliphage lambda. J Mol Biol 170:319–342

    Article  PubMed  CAS  Google Scholar 

  • West SC (1994) The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins. Cell 76:9–15

    Article  PubMed  CAS  Google Scholar 

  • Wiegand RC, Beattie KL, Holloman WK, Radding CM (1977) Uptake of homologous single-stranded fragments by superhelical DNA III. The product and its enzymic conversion to a recombinant molecule. J Mol Biol 116:805–824

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Seeman NC (1994) Symmetric Holliday junction crossover isomers. J Mol Biol 238:658–668

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Fu TJ, Seeman NC (1993) Symmetric immobile DNA branched junctions. Biochemistry 32:8062–8067

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hsieh, P., Panyutin, I.G. (1995). DNA Branch Migration. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics