Skip to main content

Neuronal Networks Of The Mammalian Brain Have Functionally Different Classes Of Neurons: Suggestions For A Taxonomy Of Membrane Ionic Conductances

  • Conference paper
  • 177 Accesses

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 4))

Abstract

There has been an explosion of newly discovered membrane ionic conductances in recent years. Besides the fast inward and outward-going conductances that make up the action potential or spike, several other subthreshold and suprathreshold ionic conductances help to decide when and how the action potentials will fire. These conductances shape neuronal firing patterns and explain various neuronal properties such as: long firing latencies, facilitation, spike frequency adaptation, pacemaking, bursting, multiple thresholds, synaptic integration and long lasting modulation by transmitters and peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike N., Kostyuk P.G. and Osipchuk Y.V. (1989) Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypotahlamic neurones. J. Physiol. ( London ) 412: 181–195.

    Google Scholar 

  • Alberts B., Bray D., Lewis J., Roff M., Roberts K. and Watson J.D. (1983) Molecular Biology of the Cell. Garland Pub. Inc. N. Y. pp. 1049–150.

    Google Scholar 

  • Arbib M. A. (1964) Brains, Machines and Mathematics. McGraw-Hill, N. Y.

    Google Scholar 

  • Armstrong C. M. (1981) Sodium channels and gating currents. Physiol. Rev. 61: 644–683.

    Google Scholar 

  • Ashford M.L.J., Sturgess N.C., Trout N.J., Gardner N.J. and Hales C.N. (1988) Adenosine-5’- triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 412: 297–304.

    Article  Google Scholar 

  • Baldissera F. and Gustafsson B. (1974) Firing behaviour of aneuron model based on the afterhyperpolarization conductance timecourse and algebraic summation. Adaptation and steady state firing. Acta physiol. scand. 92: 27–47.

    Article  Google Scholar 

  • Bargas J., Galarraga E. and Aceves J. (1988) Electrotonic properties of neostriatal neurons are modulated by extracellular potassium. Exp. Brain Res. 72: 390–398

    Article  Google Scholar 

  • Bargas J. Galarraga E. Chang H. T. and Kitai S. T. (1988) Electrophysiological and double-labelling immunohistochemicalanalyses of neurons in the substantia nigra zona compacta of the Soc. Neurosci. Abstr. 14: 1025

    Google Scholar 

  • Bargas J., Galarraga E. and Aceves J. (1989) An early outward conductance modulates the firing latency and frequency of neostriatal neurons of the rat brain. Exp. Brain Res. 75: 146–156.

    Google Scholar 

  • Bargas J., Galarraga E. and Aceves J. (1991) Dendritic activity on neostriatal neurons as inferred from somatic intracellular recordings. Brain Res. 539: 159–163.

    Article  Google Scholar 

  • Bean B. P. (1989) Classes of calcium channels in vertebrate cells. Ann. Rev. Physiol. 51: 367–384.

    Article  Google Scholar 

  • Byrne J. H. (1980) Quantitative aspects of ionic conductancemechanisms contribution to firing pattern of motor cells mediating inking behavior in Aplysia californica. J. Neurophysiol. 43: 651–658

    Google Scholar 

  • Caffrey J. M., Brown L. D., Emanuel J. G. R., Eng D. L., Waxman S. G. and Kocsis J. D. (1991) Na+ channel isotypes in rat dorsalroot gamglion neurons identified by electrophysiological and molecular biological techniques. Soc. Neurosci. Absr. 17: 952

    Google Scholar 

  • Cajal S. R. (1905) Histologia del Sistema Nervioso De Los Vertebrados. Consejo Superior de Investigaciones Cientificas. Madrid (reedition from the original).

    Google Scholar 

  • Carbone E. and Swandulla D. (1990) Neuronal calcium channels: kinetics, blockade and modulation. Prog. Biophys. molec. Biol. 54: 31–58.

    Google Scholar 

  • Cassell J. F. and McLachlan E. M. (1987) Muscarinic agonistsblock five different potassium conductances in guinea-pig sympathetic neurones. Br. J. Pharmac. 91: 259–261.

    Google Scholar 

  • Cherksey B. D., Sugimori M. and Llinás R. (1990) Isolation of acalcium channel from mammalian cerebellar tissue using synthetic FTX. Soc. Neurosci. Absr. 16: 956

    Google Scholar 

  • Cherksey B.f Goodnow R., Sugimori M., Nakanishi K. and Llinás R. (1991) Polyamine block of P-type calcium channels. Soc. Neurosci.Absr. 17: 342.

    Google Scholar 

  • Clark R. B., Nakajima T., Giles W., Kanai K., Momose Y. and Szabo G. (1990) Two distinct types of inwardly rectifying K+ channels in bull-frog atrial myocytes. J. Physiol. ( London ) 424: 229–251.

    Google Scholar 

  • Connor J. A. (1982) Mechanisms of pacemaker discharge in invertebrate neurons. In: Cellular Pacemakers (ed.: Carpenter D.O) Wiley, N.Y. pp.: 187–217.

    Google Scholar 

  • Connor J. A. (1985) Neural pacemakers and rhythmicity. Ann. Rev. Physiol. 47: 17–28.

    Article  Google Scholar 

  • Connors B. W. and Gutnick M. J. (1990) Intrinsic firing patterns of diverse neocortical neurons. TINS 13: 99–104.

    Google Scholar 

  • Constanti A. and Galvan M. (1983) Fast inward rectifying currentaccounts for anomalous rectification in olfactory cortex neurones. J. Physiol. (London) 335: 153–178.

    Google Scholar 

  • Coulter D. A., Lo Turco J. J., Kubota M., Disterhoft J. F., Moore J. W. and Alkon D. L. (1989) Classical conditioning reducesamplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. J. Neurophysiol. 61: 971–981.

    Google Scholar 

  • Cowan J. D. and Sharp D. H. (1988) Neural nets and artificial intelligence. Dedalus 117: 85–121.

    Google Scholar 

  • Crepel F. and Penit-Soria J. (1986) Inward rectification and low-threshold calcium conductance in rat cerebellar Purkinje cells. An in vitro study. J. Physiol. (London) 372: 1–23.

    Google Scholar 

  • Crill W. E. and Schwindt P. C. (1983) Active currents in mammalian central neurons. TINS 6: 236–240.

    Google Scholar 

  • Deschenes M., Paradis, M. Roy J. P. and Steriade M. (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J. Neurophysiol. 51: 1196–1296.

    Google Scholar 

  • DiFrancesco D. (1981) A study of the ionic nature of the pacemaker current in calf Purkinje cells. J. Physiol. (London) 314: 377–393.

    Google Scholar 

  • Dinan T. G., Crunelli V. and Kelly J. S. (1987) Neurolepticsdecrease calcium-activated potassium conductance in hippocampal pyramidal cells. Brain Res. 407: 159–162.

    Article  Google Scholar 

  • Dolphin A. C. and Scott R. H. (1987) Calcium channel currents andtheir inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J. Physiol. ( London ) 386: 1–17.

    Google Scholar 

  • Dreyer F. (1990) Peptide toxins and potassium channels. Rev. Physiol. Biochem. Pharmacol. 115: 93–136.

    Article  Google Scholar 

  • Dunlap K., Holz G. G. and Rane S. G. (1987) G proteins as regulators of ion channel function. TINS 10: 241–244.

    Google Scholar 

  • Galarraga E., Bargas J., Sierra A. and Aceves J. (1989) The role of calcium in the repetitive firing of neostriatal neurons. Exp. Brain Res. 75: 157–168.

    Google Scholar 

  • Galvan M. and Adams P. R. (1982) Control of calcium current in rat sympathetic neurons by norepinephrine. Brain Res. 244: 135–144.

    Article  Google Scholar 

  • Getting P. A. (1989) Reconstruction of small neural networks. In: Methods in Neuronal Modeling, (eds.: Koch C. and Segev I.) The MIT Press, Cambridge Mass. pp.: 171–194.

    Google Scholar 

  • Grace A. A. (1991) Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse 7: 221–234.

    Article  Google Scholar 

  • Gross R. A. and MacDonald R. L. (1989) Activators of protein kinase C selectively enhance inactivation of a calcium current component of cultured sensory neurons in a pertussis toxin sensitive manner. J. Neurophysiol. 61: 1259–1269.

    Google Scholar 

  • Hagiwara S., Miyazaki S. and Rosenthal N. P. (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J. Gen. Physiol. 67: 621–638.

    Article  Google Scholar 

  • Herrington J. and Lingle C.J. (1992) Kinetic and pharmacological properties of low voltage-activated Ca2+ current in rat clonal (GH3) pituitary cells. J. Neurophysiol. 68: 213–232.

    Google Scholar 

  • Hille B. (1992) Ionic Channels of Excitable Membranes. Sinauer Ass. Inc. Sunderland, Mass.

    Google Scholar 

  • Hodgkin A. L. and Huxley A. F. (1952) A quantitative descriptionof membrane current and its application to conduction and excitation in nerve. J. Physiol. ( London ) 117: 500–544.

    Google Scholar 

  • Hosey M. M. and Lazdunski M. (1988) Calcium channels: molecular pharmacology, structure and regulation. J. Membrane Biol. 104: 81–105.

    Article  Google Scholar 

  • Hoshi T., Zagotta W.N. and Aldrich W. (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7: 547–556.

    Article  Google Scholar 

  • Hounsgaard J. and Kiehn O. (1985) Ca- dependent bistability induced by serotonin in spinal motoneurons. Exp. Brain Res. 57: 422–425.

    Article  Google Scholar 

  • Hounsgaard J.f Kiehn O. and Mintz I. (1988) Response propertiesof motoneurones in a slice preparation of the turtle spinal cord. J. Physiol. (London) 398: 575–589.

    Google Scholar 

  • Hounsgaard J. and Midtgaard J. (1988) Intrinsic determinants offiring pattern in Purkinje cells of the turtle cerebellum in vitro. J. Physiol. (London) 402: 731–749.

    Google Scholar 

  • Hounsgaard J. and Mintz I. (1988) Calcium conductance and firing properties of spinal motoneurones in the turtle. J. Physiol. (London) 398: 591–603.

    Google Scholar 

  • Huguenard J. R. and Prince D. A. (1991) An unconventional transient Ca current in GABA-ergic neurons of rat thalamic reticular neurons. Soc. Neurosci. Absr. 17: 342.

    Google Scholar 

  • Jahnsen H. and Llinás R. (1984a) Electrophysiological properties of guinea-pig thalamic neurons: an in vitro study. J. Physiol. (London) 349: 205–226.

    Google Scholar 

  • Jahnsen H. and Llinás R. (1984b) Ionic basis for the electrorresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. (London) 349: 227–247.

    Google Scholar 

  • Jones S. W. and Adams P. R. (1987) The M-current and other potassium currents of vertebrate neurons. In: Neuromodulation (eds.: Kaczmarek L. K. and Levitan I. B. ). Oxford University Press. N.Y. pp: 159–185.

    Google Scholar 

  • Katz B. (1940) Les constantes electriques de la membrane du muscle. Arch. Sci. Physiol. 3: 285–299

    Google Scholar 

  • Kawaguchi Y., Wilson C.J., and Emson P. C. (1989) Intracellularrecording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol. 62: 1052–1068.

    Google Scholar 

  • Kay A. R., Sugimori M. and Llinás R. R. (1990) Voltage-clamp analysis of a persistent TTX-sensitive Na current in cerebellar Purkinje cells. Soc. Neurosci. Absr. 16: 182.

    Google Scholar 

  • Kolb H-A. (1990) Potassium channels in excitable and non-excitable cells. Rev. Physiol. Biochem. Pharmacol. 115: 51–91.

    Article  Google Scholar 

  • Kostyuk P. G. (1989) Diversity of calcium ion channels in cellular membranes. Neuroscience 28: 253–261.

    Article  Google Scholar 

  • Kramer R. H., Kaczmarek L. K. and Levitan E. S. (1991) Neuropeptide inhibition of voltage-gated calcium channels mediated by mobilization of intracellular calcium. Neuron 6: 557–563.

    Article  Google Scholar 

  • Lemos J. R. and Wang G. (1991) FTX inhibits transient Ca-current of rat neurohypophyseal nerve terminals. Soc. Neurosci. Absr. 17: 342.

    Google Scholar 

  • Llinás R. (1985) Rebound excitation as the physiological basisfor tremor: a biophysical study of the oscillatory propeties of mammalian central neurones in vitro. In: International Neurological Symposia: Tremor (Eds.: Capildeo R. and Finley L.J.) MacMillan, London, pp.: 165–182.

    Google Scholar 

  • Llinás R. (1988) The intrinsic electrophysiological propertiesof mammalian neurons: insights into central nervous system function. Science 242: 1654–1664.

    Article  Google Scholar 

  • Llinás R. and Sugimori M. (1980) Electrophysiological propertiesof in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (London) 305: 171–195.

    Google Scholar 

  • Llinás R., Sugimori M. and Cherksey B. (1989) Voltage-dependent calcium conductances in mammalian neurons. The P channel. In: Calcium channels (eds.: Wray D. W., Norman R. I. and Hess P.) Annals of the New York Academy of Sciences 560: 103–111.

    Google Scholar 

  • Llinás R. and Yarom Y. (1981) Properties and distribution ofionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J. Physiol. (London) 315: 569–584

    Google Scholar 

  • Llinás R. and Yarom Y. (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their phamacological modulation: an in vitro study. J. Physiol. (London) 376: 163–182

    Google Scholar 

  • MacDermott A. B. and Weight F. F. (1982) Action potential repolarization may involve a transient, Ca - sensitive outward current in a vertebrate neuron. Nature 300: 185–188.

    Article  Google Scholar 

  • Madison D. V. and Nicoll R. A. (1984) Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. J. Physiol.(London) 354: 319–331.

    Google Scholar 

  • Madison D. V. and Nicoll R. A. (1986a) Actions of noradrenaline recorded intracellulary in rat hippocampal CA1 pyramidal neurones, in vitro. J. Physiol. ( London ) 372: 221–244.

    Google Scholar 

  • Madison D. V. and Nicoll R. A. (1986b) Cyclic adenosine 3’,5’-monophosphate mediates receptors actions of noradrenaline in rat hippocampal pyramidal cells. J. Physiol. ( London ) 372: 245–259.

    Google Scholar 

  • Martin A.R. and Dryer S.E. (1989) Potassium channels activated by sodium. Q. J. Exp. Physiol. 74: 1033–1041.

    Google Scholar 

  • Mayer M. L. and Westbrook G. L. (1983) A voltage-clamp analysisof inward (anomalous) rectification in mouse spinal sensory ganglion neurones. J. Physiol. ( London ) 340: 19–45

    Google Scholar 

  • McCormick D. A. (1989) Cholinergic and noradrenergic modulation of thalamocortical processing. TINS 12: 215–221.

    Google Scholar 

  • McCormick D. A. and Pape H.-C. (1990) Properties of ahyperpolarization activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. ( London ) 431: 291–318

    Google Scholar 

  • McCullock W. S. and Pitts W. H. (1943) A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5: 115.

    Article  MathSciNet  Google Scholar 

  • Meech R. W. (1978) Calcium-dependent potassium activation in nervous tissues. Ann. Rev. Biophys. Bioeng 7: 1–18.

    Article  Google Scholar 

  • Mintz I. M., Venema V. J., Adams M. E. and Bean B. P. (1990) The funnel-web spider toxin co-AGA-IIIA blocks N- and L- type calcium channels in neurons and cardiac muscle. Soc. Neurosci. Absr. 16: 956

    Google Scholar 

  • Mintz I. M., Venema V. J., Adams M. E. and Bean B. P. (1991)Selective block of the P-type channel in cerebellar Purkinje neurons by the spider neurotoxin ω-AGA toxin IVA. Soc. Neurosci. Absr. 17: 341.

    Google Scholar 

  • Moczydlowski E., Lucchesi K. and Ravindran A. (1988) An emerging pharmacology of peptide toxins targeted against potassium channels. J. Membrane Biol. 105: 95–111.

    Article  Google Scholar 

  • Morris C. and Lecar H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35: 193–213.

    Article  Google Scholar 

  • Muller W. and Connor J. A. (1991) Cholinergic input uncouples Ca2+ changes from K+ conductance activation and amplifies intradendritic Ca2+ changes in hippocampal neurons. Neuron 6: 901–905.

    Article  Google Scholar 

  • Neumcke B. (1990) Diversity of sodium channels in adult and cultured cells, in oocytes and in lipid bilayers. Rev. Physiol. Biochem. Pharmacol. 115: 1–49.

    Article  Google Scholar 

  • Nicoll R. A. (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241: 545–551.

    Article  Google Scholar 

  • Noble D. (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J. Physiol. (London)353: 1–50.

    Google Scholar 

  • North R. A. (1986) Opiod receptors types and membrane ion channels. TINS 9: 114–117.

    Google Scholar 

  • Pellmar T. C. (1986) Histamine decreases calcium-mediatedpotassium current in guinea-pig hippocampal CA1 pyramidal cells. J. Neurophysiol. 55: 727–738.

    Google Scholar 

  • Pineda J. C., Galarraga E., Bargas J., Cristancho M. and Aceves J. (1992) Charybdotoxin and apamin sensitivity of the calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons. J. Neurophysiol. 68: 287–294.

    Google Scholar 

  • Rinzel J. and Ermentrout G. B. (1989) Analysis of neural excitability and oscillations. In: Methods in Neuronal Modeling (eds: Koch C. and Segev I.) The MIT Press. Cambridge Mass. pp. 135–169.

    Google Scholar 

  • Rogawski M. A. (1985) The A current: how ubiquitous a feature of excitable cells is it? TINS 8: 214–219

    Google Scholar 

  • Rudy B. (1988) Diversity and ubiquity of K channels. Neuroscience 25: 729–749.

    Article  Google Scholar 

  • Rudy B., Kentros C. and Vega-Saenz de Miera E. (1991) Families of potassium channel genes in mammals: toward an understanding of the molecular basis of potassium channel diversity, mol. and Cell. Neuroscience 2: 89–102.

    Google Scholar 

  • Sala F. and Hernández-Cruz (1990) Calcium diffusion modeling in a spherical neuron. Biophys. J. 57: 313–324.

    Article  Google Scholar 

  • Schwindt P. C. and Crill W. E. (1980) Properties of a persistent inward current in normal and TEA-injected motoneurons. J. Neurophysiol. 43: 1700–1723.

    Google Scholar 

  • Schwindt P. C. and Crill W. E. (1984) Membrane properties of cat spinal motoneurons. In: Handbook of the Spinal Cord (ed.: Davidoff R. A.) Marcel Dekker Inc. N.Y. pp. 199–242.

    Google Scholar 

  • Schwindt P. C. and Crill W. E. (1989) Transformation of synapticinput into spike trains in central mammalian neurons. In: Textbook of Physiology vol. I (eds.: Patton H. D.f Fuchs A. F.,Hille B., Scher A. M. and Steiner R.) W. B. Saunders Co.Philadelphia. pp. 264–284.

    Google Scholar 

  • Schwindt P. C., Spain W. J., Foehring R. C., Stafstrom C. E.,Chubb M. C. and Crill W. E. (1988) Multiple potassiumconductances and their functions in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 59: 424–449

    Google Scholar 

  • Sher E. and Clementi F. (1991) ω-conotoxin-sensitive voltage operated calcium channels in vertebrate cells. Neuroscience 42:30–307.

    Google Scholar 

  • Spain W. J., Schwindt P. C. and Crill W. E. (1987) Anomalous rectification in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 57: 1555–1576

    Google Scholar 

  • Steriade M. and Llinás R. (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol. Revs. 68: 649–742.

    Google Scholar 

  • Storm J. F. (1988) Temporal integration by a slowly inactivating K current in hippocampal neurons. Nature 336: 379–381.

    Article  Google Scholar 

  • Surmeier D. J., Bargas J. and Kitai S. T. (1988) Voltage clamp analysis of a transient potassium current in rat neostriatal neurons. Brain Res. 473: 187–192.

    Article  Google Scholar 

  • Surmeier D. J., Stefani A., Foehring R. C. and Kitai S. T. (1991) Developmental regulation of a slowly inactivating potassium conductance in rat neostriatal neurons. Neurosci. Letts. 122: 41–46.

    Google Scholar 

  • Swandulla D., Carbone E. and Lux D. (1991) Do calcium channelclassifications account for neuronal calcium channel diversity? TINS 14: 46–51.

    Google Scholar 

  • Sykova E. (1983) Extracellular potassium accumulation in the central nervous system. Prog. Biophys. molec. Biol. 42: 135–189.

    Google Scholar 

  • Takahashi K., Ueno S. and Akaike N. (1991) Kinetic properties of T-type Ca2+ currents in isolated rat hippocampal CA1 neurons. J. Neurophysiol. 65: 148–155.

    Google Scholar 

  • Tokimasa T. (1984) Calcium-dependent hyperpolarizations in bullfrog sympathetic neurons. Neuroscience 12: 929–937.

    Article  Google Scholar 

  • Tokimasa T., Morita K. and North A. (1981) Opiates and clonidine prolong calcium dependent after-hyperpolarizations. Nature 294: 162–163.

    Article  Google Scholar 

  • Toselli M., Lang J., Costa T. and Lux H. D. (1989) Direct modulation of voltage-dependent calcium channels by muscarinic activation of pertussis toxin-sensitive G-protein in hippocampal neurons. Pflugers Afch. 415: 255–261.

    Article  Google Scholar 

  • Tsien R. W., Ellinor P. T. and Home W. A. (1991) Moleculardiversity of voltage dependent Ca2+- channels. TIPS 12: 349–355.

    Google Scholar 

  • Tsien R. W., Lipscombe D., Madison D. V., Bley K. R. and Fox A.P. (1988) Multiple types of neuronal calcium channels and their selective modulation. TINS-11: 431–443.

    Google Scholar 

  • Wilson C. J. (1992) Dendritic morphology, inward rectification. and the functional properties of neostriatal neurons. In: SingleNeuron Computation, Academic Press, Boston, in press.

    Google Scholar 

  • Yamada W. M. f Koch C. and Adams P. R. (1989) Multiple channels and calcium dynamics. In: Methods in Neuronal Modeling (eds: Koch C. and Segev I.) The MIT Press, Cambridge Mass. pp. 97–133.

    Google Scholar 

  • Yoshimura M.f Polosa C. and Nishi S. (1986) Noradrenaline modifies sympathetic preganglionic neuron spike and afterpotential. Brain Res. 362: 370–374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bargas, J., Galarraga, E., Surmeier, D.J. (1993). Neuronal Networks Of The Mammalian Brain Have Functionally Different Classes Of Neurons: Suggestions For A Taxonomy Of Membrane Ionic Conductances. In: Rudomin, P., Arbib, M.A., Cervantes-Pérez, F., Romo, R. (eds) Neuroscience: From Neural Networks to Artificial Intelligence. Research Notes in Neural Computing, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78102-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78102-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56501-7

  • Online ISBN: 978-3-642-78102-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics