Skip to main content

Transport and Other Modes of Movement of Hormones (Mainly Auxins)

  • Chapter
Book cover Hormonal Regulation of Development II

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 10))

Abstract

In the course of writing this article, it became more and more evident that it would be scarcely possible to review the immense number of studies of translocation of plant hormones since the appearance of the previous Encyclopedia (Leopold 1961). Therefore, instead of aiming at covering all papers and considering all aspects of hormone movement, this review—still numbering more than 500 references—is restricted to three aspects of the topic: first, a brief historical sketch (Sect. 3.2); next, a consideration of the different methods used to estimate translocation and a critical evaluation of each. The section on General Remarks on Hormone Movement (Sect. 3.3), is the main theme of the review and, although there is some disadvantage in scattering results in this section, it is hoped that this is compensated far by illustrating pros and cons as well as advantages and limitations of experimental designs, and overcome by cross-referencing. The third and last section (Evidence of Hormone Translocation, Sect. 3.4) is a brief resume of the results thus far obtained in examining different types of hormone movement and hormone movement systems. Space allows neither a review of the manifold interactions between external and internal factors on hormone translocation, nor an in-depth consideration of the role of hormone distribution and its influence on patterns of growth and development, although they are occasionally referred to in different sections of this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ABA:

abscisic acid

2,4-D:

2,4-dichlorophenoxyacetic acid

DNP:

2,4- dinitrophenol

GA3 :

gibberellic acid

IAA:

indole-3-acetic acid

IBA:

indole-3-butyric acid

NAA:

naphthalene-1-acetic acid

NPA:

naphthylphthalamic acid

PEP:

phosphoenolpyruvate

2,3,5-T:

2,3,5-trichlorophenoxyacetic acid

TIBA:

2,3,5-triiodobenzoic acid

References

  • Aasheim T, Iversen T-H (1971) Decarboxylation and transport of auxin in segments of sunflower and cabbage roots. II. A chromatographic study using IAA-1–14C and IAA-5–3H. Physiol Plant 24:325–329

    CAS  Google Scholar 

  • Abrol BK, Audus LJ (1973) The lateral transport of 2,4-dichlorophenoxyacetic acid in horizontal hypocotyl segments of Helianthus annuus. J Exp Bot 24:1209–1223

    CAS  Google Scholar 

  • Addicott FT (1970) Plant hormones in the control of abscission. Biol Rev Camb Philos Soc 45:485–524

    CAS  Google Scholar 

  • Albaum HG, Kaiser S, Nestler HA (1937) The relation of hydrogen-ion concentration to the penetration of 3-indoleacetic acid into Nitella cells. Am J Bot 24:513–518

    CAS  Google Scholar 

  • Altman A, Mozes R (1977) Comparative basipetal transport of 6-benzylaminopurine-8–14C, gibberellin A33H, IAA-2–14C, and sucrose-14C in the root of intact Citrus auranium seedlings. Physiol Plant 39:233–235

    CAS  Google Scholar 

  • Alvim R, Hewett EW, Saunders PF (1976) Seasonal variation in the hormone content of willow. I. Changes in abscisic acid content and cytokinin activity in the xylem sap. Plant Physiol 57:474–476

    PubMed  CAS  Google Scholar 

  • Andreae WA, Good NE (1955) The formation of indoleacetylaspartic acid in pea seedlings. Plant Physiol 30:380–382

    PubMed  CAS  Google Scholar 

  • Antoszewski R, Lis E (1968) Translocation of some radioactive compounds from the strawberry receptacle to the mother plant. Bull Acad Pol Sci 16:443–446

    CAS  Google Scholar 

  • Arisz WH (1969) Intercellular polar transport and the role of plasmodesmata in coleo-ptiles and Vallisneria leaves. Acta Bot Neerl 18:14–38

    CAS  Google Scholar 

  • Asakawa Y, Tamari K, Inoue K, Kaji J (1974) Studies on metabolism of gibberellin A3 in plant. 1. Translocation and intracellular distribution of tritiated gibberellin A3. Agric Biol Chem 38:713–717

    CAS  Google Scholar 

  • Atkin RK, Barton GE, Robinson DK (1973) Effect of root-growing temperature on substances in xylem exudate of Zea mays. J Exp Bot 24:475–487

    Google Scholar 

  • Atsmon D, Lang A, Light EN (1968) Contents and recovery of gibberellins in monoecious and gynoecious cucumber plants. Plant Physiol 43:806–810

    PubMed  CAS  Google Scholar 

  • Backus GE, Schrank AR (1952) Electrical and curvature responses of the Avena coleoptile to unilateral illumination. Plant Physiol 27:251–262

    PubMed  CAS  Google Scholar 

  • Bandurski RS (1978) Chemistry and physiology of myo-inositol esters of indole-3-acetic acid. In: Wells W, Eisenberg F (eds) Cyclitols and phosphoinositides. Academic Press, London New York, pp 35–54

    Google Scholar 

  • Banko TJ, Boe AA (1975) Effects of pH, temperature, nutrition, ethephon, and chlorome-quat on endogenous cytokinin levels of Coleus blumei Benth. J Am Soc Hortic Sci 100:168–172

    CAS  Google Scholar 

  • Barendse GWM (1974) Accumulation and metabolism of radioactive gibberellic acid in seedlings of Pharbitis nil Chois. In: Plant Growth Substances 1973. Tokyo: Hiro-kawa 1974, pp 332–341

    Google Scholar 

  • Barry AJ (1971) The effect of 2,3,5-triiodobenzoic acid on the transport and metabolism of indoleacetic acid in intact pea seedlings. B Sc Diss, Univ Southampton

    Google Scholar 

  • Basler E (1974) Abscisic acid and gibberellic acid as factors in the translocation of auxin. Plant Cell Physiol 15:351–361

    CAS  Google Scholar 

  • Basier E, McBride R (1977) Interaction of coumarin, gibberellic acid and abscisic acid in the translocation of auxin in bean seedlings. Plant Cell Physiol 18:939–947

    Google Scholar 

  • Batra MW, Edwards KL, Scott TK (1975) Auxin transport in roots: Its characteristics and relationship to growth. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London New York, pp 299–325

    Google Scholar 

  • Batt S, Venis MA (1976) Separation and localization of two classes of auxin-binding sites in corn coleoptile membranes. Planta 130:15–21

    CAS  Google Scholar 

  • Batt S, Wilkins MB, Venis MA (1976) Auxin binding to corn coleoptile membranes: kinetics and specificity. Planta 130:7–13

    CAS  Google Scholar 

  • Bayer MH (1972) Transport and accumulation of IAA-14C in tumor-forming Nicotiana hybrids. J Exp Bot 23:801–812

    CAS  Google Scholar 

  • Beever JE, Woolhouse HW (1973) Increased cytokinin from root system of Perilla and flower and fruit development. Nature 246:31–32

    CAS  Google Scholar 

  • Beever JE, Woolhouse HW (1974) Increased cytokinin export from the roots of Perilla frutescens following disbudding or floral induction. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanism of regulation of plant growth. Roy Soc N Z, Wellington, pp 681–686

    Google Scholar 

  • Bellandi DM, Dörffling K (1974) Transport of abscisic acid-2-C-14 in intact pea seedlings. Physiol Plant 32:365–368

    CAS  Google Scholar 

  • Beyer A (1925) Untersuchungen über den Traumatotropismus der Pflanzen. Biol Zen-tralbl 45:683–702, 746–768

    Google Scholar 

  • Beyer EM (1972) Auxin transport, a new synthetic inhibitor. Plant Physiol 50:322–327

    PubMed  CAS  Google Scholar 

  • Beyer EM Jr, Morgan PW (1969) Ethylene modification of an auxin pulse in cotton stem sections. Plant Physiol 44:1690–1694

    PubMed  CAS  Google Scholar 

  • Beyer EM, Johnson AL, Sweetser PB (1976) A new class of synthetic auxin transport inhibitors. Plant Physiol 57:839–841

    PubMed  CAS  Google Scholar 

  • Black MK, Osborne DJ (1965) Polarity of transport of benzyladenine, adenine and indole-3-acetic acid in petiole segments of Phaseolus vulgaris. Plant Physiol 40:676–680

    PubMed  CAS  Google Scholar 

  • Bollag JM, Galun E (1966) Distribution of labelled indolyl-3-acetic acid in intact cucumber plants. Nature 211:647–648

    Google Scholar 

  • Bonnemain JL (1970) Transport de l’AIA marqué et de ses derivés à partir de jeunes fruits. CR Acad Sci Paris Ser D 270:1326–1329

    CAS  Google Scholar 

  • Bonnemain JL (1971) Transport et distribution des traceurs après application de AIA-2–14C sur les feuilles de Vicia faba. CR Acad Sci Paris Ser D 273:1699–1702

    CAS  Google Scholar 

  • Bonnemain JL (1972) La plante supérieure, siège d’une circulation complexe. Physiol Vég 10:697–729

    Google Scholar 

  • Bonnemain JL, Bourbouloux A (1973) The transport and metabolism of 14C-indoleacetic acid in intact plants. Proc Res Inst Pom Skierniewice Pol Ser E Conf Symp 3:207–214

    CAS  Google Scholar 

  • Bonnett HT Jr, Torrey JG (1965 a) Auxin transport in Convolvulus roots cultured in vitro. Plant Physiol 40:813–818

    PubMed  Google Scholar 

  • Bonnett HT Jr, Torrey JG (1965 b) Chemical control of organ formation in root segments of Convolvulus cultured in vitro. Plant Physiol 40:1228–1236

    PubMed  CAS  Google Scholar 

  • Bonnett HT Jr, Torrey JG (1966) Comparative anatomy of endogenous bud and lateral root formation in Convolvulus arvensis roots cultured in vitro. Am J Bot 53:496–507

    Google Scholar 

  • Bopp M (1972) On the effect of morphactin. In: Kaldewey H, Vardar Y (eds) Hormonal regulation of plant growth and development. Verlag Chemie, Weinheim, pp 333–348

    Google Scholar 

  • Bose JC (1907) Comparative electrophysiology. Longmans, London

    Google Scholar 

  • Böttger M (1970) Die hormonale Regulation des Blattfalls bei Coleus rehneltianus Berger. I. Die Wechselwirkung von Indol-3-essigsäure, Gibberellin- und Abscisinsäure auf Explantate. II. Die natürliche Rolle von Abscisinsäure im Blattfallprozeß. Planta 93:190–213

    Google Scholar 

  • Bourbouloux A, Bonnemain JL (1973) Transport de rauxine-14C en provenance de jeunes gousses de Vicia faba L. Planta 115:161–172

    CAS  Google Scholar 

  • Bourbouloux A, Bonnemain JL (1974) Transport, distribution et metabolisme de l’auxine dans la racine de Vicia faba L. après application de (14C)AIA ou de (3H)AIA sur le bourgeon. Planta 119:169–182

    CAS  Google Scholar 

  • Bourbouloux A, Bonnemain JL (1979) The different components of the movement and the areas of retention of labelled molecules after application of [3H]-indolyl-acetic acid to the apical bud of Vicia faba. Physiol Plant 47:260–268

    CAS  Google Scholar 

  • Bourbouloux A, Bonnemain JL, Vasseur J (1973) Caractéristiques du transport dans la tige de l’auxine-14C en provenance de jeunes feuilles de Vicia faba L. CR Acad Sci Paris Ser D 276:501–504

    CAS  Google Scholar 

  • Bowen MR, Hoad GV (1968) Inhibitor content of phloem and xylem sap obtained from willow (Salix viminalis) entering dormancy. Planta 81:64–70

    CAS  Google Scholar 

  • Bowen MR, Wareing PF (1969) The interchange of 14C-kinetin and 14C-gibberellic acid between the bark and xylem of willow. Planta 89:108–125

    CAS  Google Scholar 

  • Bowen MR, Wilkins MB, Cane AR, McCorquodale I (1972) Auxin transport in roots. VIII. The distribution of radioactivity in the tissues of Zea root segments. Planta 105:273–292

    CAS  Google Scholar 

  • Boysen Jensen P (1910) Über die Leitung des phototropischen Reizes in Avena-Keimpflanzen. Ber Dtsch Bot Ges 28:118–120

    Google Scholar 

  • Boysen Jensen P (1913) Über die Leitung des phototropischen Reizes in der Avenakoleoptile. Ber Dtsch Bot Ges 31:559–566

    Google Scholar 

  • Brauner L (1923) Über den Einfluß der Koleoptilspitze auf die geotropische Reaktion der Avenakeimlinge. Ber Dtsch Bot Ges 41:208–211

    Google Scholar 

  • Brauner L (1927) Untersuchungen über das geoelektrische Phänomen. Jahrb Wiss Bot 66:381–428

    Google Scholar 

  • Brauner L (1959) Neue Versuche zur Analyse des geoelektrischen Effekts. Planta 53:449–483

    CAS  Google Scholar 

  • Bridges IG, Hillman JR, Wilkins MB (1973) Identification and localisation of auxin in primary roots of Zea mays by mass spectroscopy. Planta 115:189–192

    CAS  Google Scholar 

  • Briggs WR, Steeves TA, Sussex IM, Wetmore RH (1955) A comparison of auxin destruction by tissue extracts and intact tissues of the fern Osmunda cinnamomea L. Plant Physiol 30:148–155

    PubMed  CAS  Google Scholar 

  • Brossard D, Tepper H (1969) Vitesse du transport de l’auxine exogène dans les racines du Zea mays. CR Acad Sci Paris Ser D 276:1301–1303

    Google Scholar 

  • Brown BT, Johansen O, Sasse WHF (1972) New inhibitor of auxin transport. Experientia 28:1290–1291

    CAS  Google Scholar 

  • Brown BT, Johansen O, Katekar GF, Sasse WH (1973) The effect on root geotropism of certain ortho-carboxyphenylpropanones. Pestic Sci 4:473–484

    CAS  Google Scholar 

  • Brown CL, Wetmore RH (1959) Auxin transport in the long shoots of pine. Am J Bot 46:586–590

    CAS  Google Scholar 

  • Browning G (1971) The hormonal regulation of flowering and cropping in Coffea arabica L. Ph D Diss, Univ Bristol

    Google Scholar 

  • Browning G (1973 a) Flower bud dormancy in Coffea arabica L. 1. Studies of gibberellin in flower buds and xylem sap and of abscisic acid in flower buds in relation to dormancy release. J Hortic Sci 48:29–41

    CAS  Google Scholar 

  • Browning G (1973 b) Flower bud dormancy in Coffea arabica L. 2. Relation of cytokinins in xylem sap and flower buds to dormancy release. J Hortic Sci 48:297–310

    CAS  Google Scholar 

  • Bünning E, Reisener HJ, Weygand F, Simon H, Klebe JF (1956) Versuche mit radioaktiver Indolessigsäure zur Prüfung der sogenannten Ablenkung des Wuchsstoffstromes durch Licht. Z Naturforsch 11b: 363–364

    Google Scholar 

  • Burrows WJ, Carr DJ (1969) Effects of flooding the root system of sunflower plants on the cytokinin content in the xylem sap. Physiol Plant 22:1105–1112

    PubMed  CAS  Google Scholar 

  • Cande WZ, Ray PM (1976) Nature of cell-to-cell transfer of auxin in polar transport. Planta 129:43–52

    CAS  Google Scholar 

  • Cande WZ, Goldsmith MHM, Ray PM (1973) Polar auxin transport and auxin-induced elongation in the absence of cytoplasmic streaming. Planta 111: 279–296

    CAS  Google Scholar 

  • Canny MJ (1960) The rate of translocation. Biol Rev 35:507–532

    PubMed  CAS  Google Scholar 

  • Canny MJ (1971) Translocation: mechanism and kinetics. Annu Rev Plant Physiol 22:237–260

    CAS  Google Scholar 

  • Canny MJ (1973) Phloem translocation. Univ Press, Cambridge

    Google Scholar 

  • Carr DJ, Burrows WJ (1966) Evidence for the presence in xylem sap of substances with kinetin-like activity. Life Sci 5:2061–2077

    CAS  Google Scholar 

  • Carr DJ, Reid DM (1968) The physiological significance of the synthesis of hormones in roots and of their export to the shoot system. In: Wightman F, Setterfïeld G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1169–1185

    Google Scholar 

  • Carr DJ, Reid DM, Skene KGM (1964) The supply of gibberellins from the root to the shoot. Planta 63:382–392

    CAS  Google Scholar 

  • Chailakhyan MKh, Khlopenkova LP, Khazhakyan KhK (1974) Movement of gibberellins and their effect on shoot growth and stem thickening in entire plants. Dokl Bot Sci 215:48–487

    Google Scholar 

  • Chenou E, Sossountzov L, Lefebvre M-F (1978) Distribution de l’AIA-14C en relation avec l’inhibition de croissance des bourgeons: étude d’une fougère, le Marsilea drummondii A. Br. Physiol Vég 16:137–156

    CAS  Google Scholar 

  • Chin TY, Lockhart JA (1965) Translocation of applied gibberellin in bean seedlings. Am J Bot 52:828–833

    CAS  Google Scholar 

  • Ching TM, Fang SC (1958) The redistribution of radioactivity in geotropically stimulated plants pretreated with radioactive indoleacetic acid. Physiol Plant 11:722–727

    CAS  Google Scholar 

  • Cholodny N (1924) Über die hormonale Wirkung der Organspitze bei der geotropischen Krümmung. Ber Dtsch Bot Ges 42:536–562

    Google Scholar 

  • Cholodny N (1926) Beiträge zur Analyse der geotropischen Reaktion. Jahrb Wiss Bot 65:447–459

    Google Scholar 

  • Cholodny N (1934) Über die Bildung und Leitung des Wuchshormons bei den Wurzeln. Planta 21:517–530

    CAS  Google Scholar 

  • Christie AE, Leopold AC (1965 a) On the manner of triiodobenzoic acid inhibition of auxin transport. Plant Cell Physiol 6:337–345

    CAS  Google Scholar 

  • Christie AE, Leopold AC (1965 b) Entry and exit of indoleacetic acid in corn coleoptiles. Plant Cell Physiol 6:453–465

    CAS  Google Scholar 

  • Chvojka L, Stohr J, Hejmova L, Benes J (1971) Transport and localization of 6-(dimethyl-allylamino)purine-8–14C cytokinin in apple trees. Biol Plant 13:65–68

    CAS  Google Scholar 

  • Clark WG (1937 a) Electrical polarity and auxin transport. Plant Physiol 12:409–440

    PubMed  CAS  Google Scholar 

  • Clark WG (1937 b) Polar transport and electrical polarity in coleoptile of Avena. Plant Physiol 12:737–757

    PubMed  CAS  Google Scholar 

  • Clark WG (1938) Electrical polarity and auxin transport. Plant Physiol 13:529–552

    PubMed  CAS  Google Scholar 

  • Cleland RE (1975) Auxin-induced hydrogen ion excretion: correlation with growth, and control by external pH and water stress. Planta 127:233–242

    CAS  Google Scholar 

  • Cleland RE (1976) Kinetics of hormone-induced H+ excretion. Plant Physiol 58:210–213

    PubMed  CAS  Google Scholar 

  • Cleland RE, Prins H, Harper R, Higinbotham N (1977) Rapid hormone-induced hyperpo-larization of the oat coleoptile transmembrane potential. Plant Physiol 59:395–397

    PubMed  CAS  Google Scholar 

  • Clor MA (1967) Translocation of tritium-labelled gibberellic acid in pea stem segments and potato tuber cylinders. Nature 214:1263–1264

    CAS  Google Scholar 

  • Cohen D, Robinson JB, Paleg LG (1966) Decapitated peas and diffusible gibberellins. Aust J Biol Sci 19:535–543

    CAS  Google Scholar 

  • Cordes W (1966) Translocation of 14C-labelled indoleacetic acid in Coleus stems, as influenced by humidity. Plant Cell Physiol 7:183–184

    CAS  Google Scholar 

  • Couillerot J-P, Bonnemain J-L (1975) Transport et devenir des molécules marquées après l’application d’acide gibbérellique-14C sur les jeunes feuilles de tomate. CR Acad Sci Paris Ser D 280:1453–1454

    CAS  Google Scholar 

  • Crozier A, Reid DM (1971) Do roots synthesize gibberellins? Can J Bot 49:967–975

    CAS  Google Scholar 

  • Cummins WR, Kende H, Raschke K (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99:347–351

    CAS  Google Scholar 

  • Da Cruz GS, Audus LJ (1978) Studies on the transport of tritiated indol-3-ylacetic acid in stolones of Saxifraga sarmentosa. Ann Bot 42:577–594

    Google Scholar 

  • Darwin C (1880) The power of movement in plants. Murray, London

    Google Scholar 

  • Davenport TL, Jordan WR, Morgan PW (1977 a) Movement and endogenous levels of abscisic acid during water stress-induced abscission in cotton seedlings. Plant Physiol 59:1165–1168

    PubMed  CAS  Google Scholar 

  • Davenport TL, Morgan PW, Jordan WR (1977 b) Auxin transport as related to leaf abscission during water stress in cotton. Plant Physiol 59:554–557

    PubMed  CAS  Google Scholar 

  • Davenport TL, Jordan WR, Morgan PW (1979) Movement of kinetin and gibberellic acid in leaf petioles during water stress-induced abscission in cotton. Plant Physiol 63:152–155

    PubMed  CAS  Google Scholar 

  • Davenport TL, Morgan PW, Jordan WR (1980) Reduction of auxin transport capacity with age and internal water deficits in cotton petioles. Plant Physiol 65:1023–1025

    PubMed  CAS  Google Scholar 

  • Davey JE, van Staden J (1976) Cytokinin translocation: Changes in zeatin and zeatin-riboside levels in the root exudate of tomato plants during their development. Planta 130:69–72

    CAS  Google Scholar 

  • Davies LJ, Rappaport L (1975) Metabolism of tritiated gibberellins in d-5 dwarf maize. I. In excised tissues and intact dwarf and normal plants. Plant Physiol 55:620–625

    Google Scholar 

  • Davies PJ (1973) The uptake and fractional distribution of differentially labeled indoleacetic acid in light grown stems. Physiol Plant 28:95–100

    CAS  Google Scholar 

  • Davies PJ (1974) The uptake and elution of indoleacetic acid by pea stem sections in relation to auxin induced growth. In: Plant growth substances 1973. Hirokawa, Tokyo, pp 767–779

    Google Scholar 

  • Davies PJ, Mitchell EK (1972) Transport of indoleacetic acid in intact roots of Phaseolus coccineus. Planta 105:139–154

    CAS  Google Scholar 

  • Davies PJ, Rubery PH (1978) Components of auxin transport in stem segments of Pisum sativum L. Planta 142:211–219

    CAS  Google Scholar 

  • Davies PJ, Doro JA, Tarbox AW (1976) The movement and physiological effect of indoleacetic acid following point applications to root tips of Zea mays. Physiol Plant 36:333–337

    CAS  Google Scholar 

  • Davison RM (1965) Some properties of a plant growth inhibitor present in xylem sap of woody plants. Austr J Biol Sci 18:475–486

    CAS  Google Scholar 

  • Davison RM, Young H (1973) Abscisic acid content of xylem sap. Planta 109:95–98

    CAS  Google Scholar 

  • Davison RM, Young H (1974) Seasonal changes in the level of abscisic acid in xylem sap of peach. Plant Sci Lett 2:79–82

    CAS  Google Scholar 

  • Day BE (1952) Absorption and translocation of 2,4-dichlorophenoxyacetic acid by bean plants. Plant Physiol 27:143–152

    PubMed  CAS  Google Scholar 

  • Dedolph RR, Breen JJ, Gordon SA (1965) Geoelectric effect and geotropic curvature. Science 148:1100–1101

    PubMed  CAS  Google Scholar 

  • de la Fuente RK, Leopold AC (1966) Kinetics of polar auxin transport. Plant Physiol 41:1481–1484

    PubMed  Google Scholar 

  • de la Fuente RK, Leopold AC (1970a) The transportable auxin pool. Plant Physiol 45:19–24

    PubMed  Google Scholar 

  • de la Fuente RK, Leopold AC (1970b) Turnover in the transportable auxin pool. Plant Physiol 45:642–643

    Google Scholar 

  • de la Fuente RK, Leopold AC (1972) Two components of auxin transport. Plant Physiol 50:491–495

    PubMed  CAS  Google Scholar 

  • de la Fuente RK, Leopold AC (1973) A role for calcium in auxin transport. Plant Physiol 51:845–847

    Google Scholar 

  • Dohrmann U, Hertel R, Kowalik H (1978) Properties of auxin binding sites in different subcellular fractions from maize coleoptiles. Planta 140:97–106

    CAS  Google Scholar 

  • Dolk HE (1936) Geotropie en groeistof. Diss Utrecht 1930. English translation: Geotrop-ism and the growth substance. Rec Trav Bot Néerl 33:509–585

    Google Scholar 

  • Dörffling K, Böttger M (1968) Transport von Abscisinsäure in Explantaten, Blattstiel-und Internodialsegmenten von Coleus rehneltianus. Planta 80:299–308

    Google Scholar 

  • Dörffling K, Bellandi DM, Böttger M, Lückel H, Menzer U (1973) Abscisic acid: Properties and transport and effect on distribution of potassium and phosphorus. Proc Res Inst Pomol Skierniewice Pol Ser E Conf Symp 3:259–272

    Google Scholar 

  • Drake G, Carr DJ (1978) Plasmodesmata, tropisms, and auxin transport. J Exp Bot 29:1309–1318

    CAS  Google Scholar 

  • Du Buy HG, Olson RA (1940) The relation between respiration, protoplasmic streaming, and auxin transport in the Avena coleoptile. Am J Bot 27:401–414

    Google Scholar 

  • Edwards KL, Goldsmith MHM (1980) pH-dependent accumulation of indoleacetic acid by corn coleoptile sections. Planta 147:457–466

    CAS  Google Scholar 

  • Eliasson L (1972) Translocation of shoot-applied indolylacetic acid into the roots of Populus tremula. Physiol Plant 27:412–416

    CAS  Google Scholar 

  • Eliezer J, Morris DA (1979) Effects of temperature and sink activity on the transport of 14C-labelled indol-3yl-acetic acid in the intact pea plant (Pisum sativum L.) Planta 147:216–224

    CAS  Google Scholar 

  • Eliezer J, Morris DA (1980) Cell length, light and 14C-labelled indol-3yl-acetic acid transport in Pisum sativum L. and Phaseolus vulgaris L. Planta 149:327–331

    CAS  Google Scholar 

  • El-Saidi MT (1971) Transport and metabolism of kinetin-8–14C in Zea mays L. roots. Ann Bot 35:1073–1083

    CAS  Google Scholar 

  • El-Saidi MT (1972) Transport and metabolism of kinetin-8–14C in the mesocotyl and coleoptile of Zea mays L. Ann Bot 36:99–107

    CAS  Google Scholar 

  • Epstein E, Cohen ID, Bandurski RS (1980) Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol 65:415–421

    PubMed  CAS  Google Scholar 

  • Eschrich W (1968) Translokation radioaktiv markierter Indolyl-3-essigsäure in Siebröhren von Vicia faba. Planta 78:144–157

    CAS  Google Scholar 

  • Etherton B (1970) Effect of indole-3-acetic acid on membrane potentials of oat coleoptile cells. Plant Physiol 45:527–528

    PubMed  CAS  Google Scholar 

  • Everat-Bourbouloux A, Bonnemain J-L (1980) Distribution of labelled auxin and derivatives in stem tissues of intact and decapitated broad-bean plants in relation to apical dominance. Physiol Plant 50:145–152

    CAS  Google Scholar 

  • Faber E-R (1936) Wuchsstoffversuche an Keimwurzeln. Jahrb Wiss Bot 83:439–469

    CAS  Google Scholar 

  • Fang SC, Butts JS (1957) Studies on carboxyl-14C-labelled 3-indoleacetic acid in plants. Plant Physiol 32:253–259

    PubMed  CAS  Google Scholar 

  • Field RJ, Peel A J (1971) The movement of growth regulators and herbicides into the sieve elements of willow. New Phytol 70:997–1003

    CAS  Google Scholar 

  • Filner B, Hertel R, Steele Ch, Fan V (1970) Some aspects of geotropism in coleoptiles. Planta 94:333–354

    Google Scholar 

  • Fitting H (1907) Die Leitung tropistischer Reize in parallelotropen Pflanzenteilen. Jahrb Wiss Bot 44:177–253

    Google Scholar 

  • Fletcher RA, Zalik S (1965) Effect of light of several spectral bands on the metabolism of radioactive IAA in bean seedlings. Plant Physiol 40:549–552

    PubMed  CAS  Google Scholar 

  • Fox JE, Weis JS (1965) Transport of the kinin, N6-benzyladenine: non-polar or polar? Nature 206:678–679

    CAS  Google Scholar 

  • Fry SC, Wangermann E (1976) Polar transport of auxin through embryos. New Phytol 77:313–317

    CAS  Google Scholar 

  • Fulford RM, Quinlan JD, Lacey HJ, Barlow HWB (1968) The acropetal movement of growth substances from young leaves on woody shoots. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1187–1203

    Google Scholar 

  • Gagianas AA, Berg AR (1977) The effect of morphactin (methyl 2-chloro-9-hydroxyfluor-ene-9-carboxylate) on basipetal transport of indol-3-ylacetic acid in hypocotyl sections of Phaseolus vulgaris L. Ann Bot 41:1135–1148

    CAS  Google Scholar 

  • Galston AW, Hillman WS (1961) The degradation of auxin. In: Ruhland W (ed) Encyclopedia of plant physiology vol 14. Springer, Berlin Göttingen Heidelberg, pp 647–670

    Google Scholar 

  • Gee H (1972) Localization and uptake of 14C-IAA in relation to xylem regeneration in Coleus internodes. Planta 108:1–9

    Google Scholar 

  • Gee H, Greyson RI (1969) Ion exchange resin beads as a carrier for growth substances. Can J Bot 47:1505–1506

    CAS  Google Scholar 

  • Gillespie B, Thimann KV (1961) The lateral transport of indoleacetic acid-C14 in geotrop-ism. Experientia 17:126–129

    PubMed  CAS  Google Scholar 

  • Gillespie B, Thimann KV (1963) Transport and distribution of auxin during tropistic response. I. The lateral migration of auxin in geotropism. Plant Physiol 38:214–225

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1959) Characteristics of the translocation of indoleacetic acid in the coleoptile of Avena. PhD Thesis, Radcliffe Coll, Cambridge, Mass

    Google Scholar 

  • Goldsmith MHM (1966 a) Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. Suspension of polarity by total inhibition of the basipetal transport. Plant Physiol 41:15–27

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1966 b) Maintenance of polarity of auxin movement by basipetal transport. Plant Physiol 41:749–754

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1967a) Separation of transit of auxin from uptake: average velocity and reversible inhibition by anaerobic conditions. Science 156:661–663

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1967b) Movement of pulses of labeled auxin in corn coleoptiles. Plant Physiol 42:258–263

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1968 a) Comparison of aerobic and anaerobic movement of 3-indole-acetic acid in coleoptiles of oats and corn. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1037–1050

    Google Scholar 

  • Goldsmith MHM (1968 b) The transport of auxin. Annu Rev Plant Physiol 19:347–360

    CAS  Google Scholar 

  • Goldsmith MHM (1969) Transport of plant growth regulators. In: Wilkins MB (ed) The physiology of plant growth and development. McGraw-Hill, London, pp 127–162

    Google Scholar 

  • Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28:439–478

    CAS  Google Scholar 

  • Goldsmith MHM (1982) A saturable site responsible for polar transport of indole-3-acetic acid in sections of maize coleoptiles. Planta 155:68–75

    CAS  Google Scholar 

  • Goldsmith MHM, Goldsmith TH (1981) Quantitative predictions for the chemiosmotic uptake of auxin. Planta 153:25–33

    CAS  Google Scholar 

  • Goldsmith MHM, Ray PM (1973) Intracellular localization of the active process in polar transport of auxin. Planta 111:297–314

    CAS  Google Scholar 

  • Goldsmith MHM, Thimann KV (1962) Some characteristics of movement of indoleacetic acid in coleoptiles of Avena. I. Uptake, destruction, immobilization, and distribution of IAA during basipetal translocation. Plant Physiol 37:492–505

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM, Wilkins MB (1964) Movement of auxin in coleoptiles of Zea mays L. during geotropic stimulation. Plant Physiol 39:151–162

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM, Cataldo DA, Karn J, Brenneman T, Trip P (1974) The rapid non-polar transport of auxin in the phloem of intact Coleus plants. Planta 116:301–317

    CAS  Google Scholar 

  • Goldsmith MHM, Goldsmith TH, Martin MH (1981) Mathematical analysis of the chem-osmotic polar diffusion of auxin through plant tissues. Proc Natl Acad Sci USA 78:976–980

    PubMed  CAS  Google Scholar 

  • Gordon ME, Letham DS, Parker CW (1974 a) Regulators of cell division in plant tissues XVIII. The metabolism and translocation of zeatin in intact radish seedlings. Ann Bot 38:809–825

    CAS  Google Scholar 

  • Gordon ME, Wilson MM, Parker CW, Letham DS (1974b) The metabolism of cytokinins by radish seedlings. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanism of regulation of plant growth. Roy Soc N Z, Wellington, pp 773–780

    Google Scholar 

  • Gordon SA, Eib M (1956) Auxin transport in the phototropic response (abstract). Plant Physiol Suppl 31: XIV

    Google Scholar 

  • Gorter CJ (1932) Groeistofproblemen bij Wortels. Diss Univ Utrecht

    Google Scholar 

  • Grahm L (1964) Measurements of geoelectric and auxin-induced potentials in coleoptiles with refined vibrating electrode technique. Physiol Plant 17:231–261

    Google Scholar 

  • Grahm L (1971) A vibrating-reed electrometer for the measurement of transverse and longitudinal potential differences in plants. In: Gordon SA, Cohen MJ (eds) Gravity and the organism. Univ Chicago Press, Chicago London, pp 159–162

    Google Scholar 

  • Grahm L, Hertz CH (1962) Measurements of the geoelectric effect in coleoptiles by a new technique. Physiol Plant 15:96–114

    Google Scholar 

  • Grahm L, Hertz CH (1964) Measurements of the geoelectric effect in coleoptiles. Physiol Plant 17:186–201

    Google Scholar 

  • Greene DW (1975) Cytokinin activity in xylem sap and extracts of MM 106 apple root-stocks. Hort Science 10:73–74

    CAS  Google Scholar 

  • Greenwood MS, Goldsmith MHM (1970) Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos. Planta 95:297–313

    CAS  Google Scholar 

  • Greenwood MS, Hillman JR, Shaw S, Wilkins MB (1973) Localisation and identification of auxin in roots of Zea mays. Planta 109:369–374

    CAS  Google Scholar 

  • Gregory FG, Hancock CR (1955) The rate of transport of natural auxin in woody shoots. Ann Bot 19:451–465

    CAS  Google Scholar 

  • Grochowska MJ (1968) Translocation of indole-3-acetic acid-2–14C injected into seeds of five-week-old apple fruits. Bull Acad Pol Sci 16:577–580

    CAS  Google Scholar 

  • Guern J, Sadorge P (1967) Polarité du transport de la 6-benzylaminopurine dans les jeunes plantes étiolées de Cicer arietinum L. CR Acad Sci Paris Ser D 264:2106–2109

    CAS  Google Scholar 

  • Guern J, Dorée M, Sadorge P (1968) Transport, metabolism and biological activity of some cytokinins. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1155–1167

    Google Scholar 

  • Guttenberg H v., Zetsche K (1956) Der Einfluß des Lichtes auf die Auxinbildung und den Auxintransport. Planta 40:99–134

    Google Scholar 

  • Hall PL, Bandurski RS (1978) Movement of indole-3-acetic acid and tryptophan-derived indole-3-acetic acid from the endosperm to the shoot of Zea mays L. Plant Physiol 61:425–429

    PubMed  CAS  Google Scholar 

  • Hall SM, Baker DA (1972) The chemical composition of Ricinus phloem exudate. Planta 106:131–140

    CAS  Google Scholar 

  • Hall SM, Medlow GC (1974) Identification of IAA in phloem and root pressure saps of Ricinus communis L. by mass spectrometry. Planta 119:257–261

    CAS  Google Scholar 

  • Halliday MBW, Wangermann E (1972a) Leaf abscission in Coleus. I. Abscission zone formation and the effect of auxin on abscission. New Phytol 71:649–663

    CAS  Google Scholar 

  • Halliday MBW, Wangermann E (1972b) Leaf abscission in Coleus. II. The distribution and fate of [14C]-indolylacetic acid in the petiole. New Phytol 71:665–670

    CAS  Google Scholar 

  • Hare RC (1964) Indoleacetic acid oxidase. Bot Rev 30:129–165

    CAS  Google Scholar 

  • Harel S (1969) Modification of 2,4-dichlorophenoxyacetic acid movement in bean petioles by light. Plant Physiol 44:615–617

    PubMed  CAS  Google Scholar 

  • Hartung W (1975) Die Wirkung von niedriger Temperatur, Stickstoffatmosphäre und Entkopplern auf die longitudinale Radioaktivitätsverteilung nach akropetaler und basipetaler Applikation von [2–14C]-ABA in langen Wurzelsegmenten von Phaseolus coccineus L. Planta 126:173–179

    CAS  Google Scholar 

  • Hartung W (1976 a) Der basipetale [2–14C]Abscisinsäuretransport in Wurzeln intakter Bohnenkeimlinge und seine Bedeutung für den Wurzelgeotropismus. Planta 128:59–62

    CAS  Google Scholar 

  • Hartung W (1976 b) Effect of water stress on transport of [2–14C]abscisic acid in intact plants of Phaseolus coccineus L. Oecologia 26:177–183

    Google Scholar 

  • Hartung W (1977) Der Transport von [2–14C]Abscisinsäure aus dem Wurzelsystem intakter Bohnenkeimlinge in die oberirdischen Teile der Pflanze. Z Pflanzenphysiol 83:81–84

    CAS  Google Scholar 

  • Hartung W, Behl R (1974) Transport und Stoffwechsel von 2-[14C]-Abscisinsäure in Wurzelsegmenten von Phaseolus coccineus L. Planta 120:299–305

    CAS  Google Scholar 

  • Hartung W, Behl R (1975 a) Lokalisation des akropetalen Transports von 2-[14C]Abs-cisinsäure und Hinweis für einen Radialtransport von ABA zwischen Zentralzylinder und Rindenzylinder in Wurzeln von Phaseolus coccineus L. Planta 122:53–59

    CAS  Google Scholar 

  • Hartung W, Behl R (1975b) Die Wirkung von Licht auf den Transport von 2-[14C]Abs-cisinsäure in Bohnenwurzelsegmenten. Planta 122:61–65

    CAS  Google Scholar 

  • Hartung W, Phillips ID J (1974) Basipetally polarised transport of [3H] gibberellin A1 and [14C]gibberellin A3, and acropetal polarity of [14C]indole-3-acetic acid transport in stelar tissues of Phaseolus coccineus roots. Planta 118:311–322

    CAS  Google Scholar 

  • Hasenstein K-H (1982) Transport und Immobilisierung von Auxin im Hypokotyl von Helianthus annuus L. Eine experimentelle und mathematische Analyse. Diss Univ Saarbrücken

    Google Scholar 

  • Hasenstein K-H, Kaldewey H (1983) Movement of auxin pulses through hypocotyls of Helianthus annuus; a mathematical analysis and deduced conclusions. Proc 3rd Int Symp Plant Growth Regulators, Oct 1981, Varna, Bulgaria, pp. 65–73

    Google Scholar 

  • Henson IE, Wheeler CT (1977) Hormones in plants bearing nitrogen-fixing root nodules: Distribution and seasonal changes in levels of cytokinins in Alnus glutinosa (L.) Gaertn. J Exp Bot 28:205–214

    CAS  Google Scholar 

  • Hertel R (1962) Der Auxintransport in der Koleoptile von Zea mays L. Diss Ludwig Maximilians-Univ, München

    Google Scholar 

  • Hertel R (1983) The mechanism of auxin transport as a model for auxin action. Z. Pflanzenphysiol 112:53–67

    CAS  Google Scholar 

  • Hertel R, Flory R (1968) Auxin movement in corn coleoptiles. Planta 82:123–144

    CAS  Google Scholar 

  • Hertel R, Leopold AC (1962) Auxintransport und Schwerkraft. Naturwissenschaften 49:377–378

    Google Scholar 

  • Hertel R, Leopold AC (1963) Versuche zur Analyse des Auxintransports in der Koleoptile von Zea mays L. Planta 59:535–562

    CAS  Google Scholar 

  • Hertel R, Evans ML, Leopold AC, Sell HM (1969) The specificity of the auxin transport system. Planta 85:238–249

    CAS  Google Scholar 

  • Hertel R, Thomson K-St, Russo VEA (1972) In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107:325–340

    CAS  Google Scholar 

  • Hertz CH (1971) Bioelectric phenomena in graviperception. In: Gordon SA, Cohen MJ (eds) Gravity and the organism. Univ Chicago Press, Chicago London, pp 151–158

    Google Scholar 

  • Hewett EW (1973) Cytokinins in woody plants. Ph D Diss Univ Wales

    Google Scholar 

  • Hewett EW, Wareing PF (1973 a) Cytokinins in Populus x robusta: Changes during chilling and bud burst. Physiol Plant 28:393–399

    CAS  Google Scholar 

  • Hewett EW, Wareing PF (1973b) Cytokinins in Populus x robusta: Qualitative changes during development. Physiol Plant 29:386–389

    CAS  Google Scholar 

  • Hewett EW, Wareing PF (1974) Cytokinin changes during chilling and bud burst in woody plants. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanism of regulation of plant growth. Roy Soc N Z, Wellington, pp 693–701

    Google Scholar 

  • Higinbotham M (1973) Electropotentials of plant cells. Annu Rev Plant Physiol 24:25–46

    CAS  Google Scholar 

  • Hillman SK, Phillips ID J (1970) Transport and metabolism of indol-3yl-(acetic acid-2–14C) in pea roots. J Exp Bot 21:959–967

    CAS  Google Scholar 

  • Hoad GV (1967) (+)-Abscisin II in phloem exudate of willow. Life Sci 6:1113–1118

    CAS  Google Scholar 

  • Hoad GV (1973 a) Hormones in the phloem of higher plants. Proc Res Inst Pomology Skierniewice, Poland Ser E 3:17–30

    CAS  Google Scholar 

  • Hoad GV (1973 b) Effect of moisture stress on abscisic acid levels in Ricinus communis L. with particular reference to phloem exudate. Planta 113:367–372

    CAS  Google Scholar 

  • Hoad GV (1975) Effect of osmotic stress on abscisic acid levels in xylem sap of sunflower (Helianthus annuus L.). Planta 124:25–29

    CAS  Google Scholar 

  • Hoad GV, Bowen MR (1968) Evidence for gibberellin-like substances in the phloem exudate of higher plants. Planta 82:22–32

    CAS  Google Scholar 

  • Hoad GV, Hillman SK, Wareing PF (1971) Studies on the movement of indole auxins in willow (Salix viminalis L.). Planta 99:73–88

    CAS  Google Scholar 

  • Hocking TJ, Hillman JR, Wilkins MB (1972) Movement of abscisic acid in Phaseolus vulgaris plants. Nature New Biol 235:124–125**

    PubMed  CAS  Google Scholar 

  • Hollis CA, Tepper HB (1971) Auxin transport within intact dormant and active white ash shoots. Plant Physiol 48:146–149

    PubMed  CAS  Google Scholar 

  • Horgan R, Hewett EW, Purse JG, Horgan JM, Wareing PF (1973) Identification of a cytokinin in sycamore sap by gas chromatography-mass spectrometry. Plant Sci Lett 1:321–324

    CAS  Google Scholar 

  • Huber B, Schmidt E, Jahnel H (1937) Untersuchungen über den Assimilatstrom. I. Mitteilung aus der sächsischen fortstlichen Versuchsanstalt Tharandt, Abteilung Botanik. Tharandt Forstl Jahrb 88:1017–1050

    Google Scholar 

  • Ingersoll RB, Smith OE (1970) Movement of (RS)-abscisic acid in the cotton explant. Plant Physiol 45:576–578

    PubMed  CAS  Google Scholar 

  • Ingersoll RB, Smith OE (1971) Transport of abscisic acid. Plant Cell Physiol 12:301–309

    CAS  Google Scholar 

  • Itai C, Ben-Zioni A (1974) Regulation of plant responses to high temperature. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanism of regulation of plant growth. Roy Soc N Z Wellington, pp 477–482

    Google Scholar 

  • Itai C, Vaadia Y (1965) Kinetin-like activity in root exudate of water-stressed sunflower plants. Physiol Plant 18:941–944

    CAS  Google Scholar 

  • Itai C, Vaadia Y (1971) Cytokinin activity in water-stressed shoots. Plant Physiol 47:87–90

    PubMed  CAS  Google Scholar 

  • Itai C, Richmond A, Vaadia Y (1968) The role of root cytokinins during water and salinity stress. Isr J Bot 17:187–193

    CAS  Google Scholar 

  • Itai C, Ben-Zioni A, Ordin L (1973) Correlative changes in endogenous hormone levels and shoot growth induced by short heat treatments to the root. Physiol Plant 29:355–360

    CAS  Google Scholar 

  • Iwami S, Masuda Y (1976) Distribution of labeled auxin in geotropically stimulated stems of cucumber and pea. Plant Cell Physiol 17:227–237

    CAS  Google Scholar 

  • Jacobs M, Gilbert SF (1983) Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220:1297–1300

    PubMed  CAS  Google Scholar 

  • Jacobs M, Hertel R (1978) Auxin binding to subcellular fractions from Cucurbita hypoco-tyls: in vitro evidence for an auxin transport carrier. Planta 142:1–10

    CAS  Google Scholar 

  • Jacobs M, Ray PM (1976) Rapid auxin-induced decrease in free space pH and its relationship to auxin-induced growth in maize and pea. Plant Physiol 58:203–209

    PubMed  CAS  Google Scholar 

  • Jacobs WP (1950) Auxin-transport in the hypocotyl of Phaseolus vulgaris L. Am J Bot 37:551–555

    CAS  Google Scholar 

  • Jacobs WP (1951) Auxin relationships in an intercalary meristem: further studies on the gynophore of Arachis hypogaea L. Am J Bot 38:307–310

    CAS  Google Scholar 

  • Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39:301–309

    CAS  Google Scholar 

  • Jacobs WP (1954) Acropetal auxin transport and xylem regeneration — a quantitive study. Am Natur 88:327–337

    Google Scholar 

  • Jacobs WP (1961) The polar movement of auxin in the shoots of higher plants: its occurrence and physiological significance. In: Klein RM (ed) Plant growth regulation. Iowa State Univ Press Ames, pp 397–409

    Google Scholar 

  • Jacobs WP (1964) The role of native growth substances in controlling the shedding of organs and abscission. Proc 16th Int Hortic Congr 1962, 5:619–625

    Google Scholar 

  • Jacobs WP (1967) Comparison of the movement and vascular differentiation effects of the endogenous auxin and of phenoxyacetic weed-killers in stems and petioles of Coleus and Phaseolus. Ann NY Acad Sci 144:102–117

    CAS  Google Scholar 

  • Jacobs WP (1972) The movement of plant hormones: auxins, gibberellins, and cytokinins. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 701–709

    Google Scholar 

  • Jacobs WP (1976) Apolar movement of zeatin through Coleus petioles and Pisum roots as estimated by bioassay and radioactive labelling. Am J Bot 63:571–577

    CAS  Google Scholar 

  • Jacobs WP (1977) Polarity of indoleacetic acid in young Coleus stems. Plant Physiol 60:95–97

    PubMed  CAS  Google Scholar 

  • Jacobs WP (1978 a) Does the induction of flowering by photoperiodic change the polarity or other characteristics of IAA transport in petioles for the short-day plant Xanthium? Plant Physiol 61:307–310

    PubMed  CAS  Google Scholar 

  • Jacobs WP (1978 b) Regulation of development by the differential polarity of various hormones as well as by effects of one hormone on the polarity of another. In: Schütte HR, Gross D (eds) Regulation of developmental processes in plants. Fischer, Jena, pp 361–380

    Google Scholar 

  • Jacobs WP (1979) Plant hormones and plant development. Cambridge Univ Press, Cambridge London

    Google Scholar 

  • Jacobs WP, De Muth PJ (1977) Non-polar movement of thiamine in stems of tomato and roots of pea. Bot Gaz 138:266–269

    CAS  Google Scholar 

  • Jacobs WP, Kaldewey H (1970) Polar movement of gibberellic acid through young Coleus petioles. Plant Physiol 45:539–541

    PubMed  CAS  Google Scholar 

  • Jacobs WP, McCready CC (1967) Polar transport of growth regulators in pith and vascular tissues of Coleus stems. Am J Bot 54:1035–1040

    CAS  Google Scholar 

  • Jacobs WP, Pruett P (1972) The polar movement of gibberellin through Coleus petioles. In: Kaldewey H, Vardar Y (eds) Hormonal regulation of plant growth and development. Verlag Chemie, Weinheim, pp 45–55

    Google Scholar 

  • Jacobs WP, Pruett P (1973) The time-course of polar movement of gibberellin through Zearoots. Am J Bot 60:896–900

    CAS  Google Scholar 

  • Jacobs WP, McCready CC, Osborne DJ (1966) Transport of the auxin 2,4-dichlorophen-oxyacetic acid through abscission zones, pulvini, and petioles of Phaseolus vulgaris. Plant Physiol 41:725–730

    PubMed  CAS  Google Scholar 

  • Johnsson A (1965) Photoinduced lateral potentials in Zea mays. Physiol Plant 18:574–576

    CAS  Google Scholar 

  • Johnsson A (1967) Relationships between photo-induced and gravity-induced electrical potentials in Zea mays. Physiol. Plant 20:562–579

    Google Scholar 

  • Jones OP (1973) Effect of cytokinins in xylem sap from apple trees on apple shoot growth. J Hortic Sci 48:181–188

    CAS  Google Scholar 

  • Jones OP, Lacey HJ (1968) Gibberellin-like substances in the transpiration stream of apple and pear trees. J Exp Bot 19:526–531

    CAS  Google Scholar 

  • Jones RL, Lang A (1968) Extractable and diffusible gibberellins from light- and dark-grown pea seedlings. Plant Physiol 43:629–634

    PubMed  CAS  Google Scholar 

  • Kaldewey H (1957) Wachstums verlauf, Wuchsstoffbildung und Nutationsbewegungen von Fritillaria meleagris L. im Laufe der Vegetationsperiode. Planta 49:300–344

    CAS  Google Scholar 

  • Kaldewey H (1962) Plagio- und Diageotropismus der Sprosse und Blätter, einschließlich Epinastie, Hyponastie, Entfaltungsbewegungen. In: Ruhland W (ed) Encyclopedia of plant physiology Vol 17/2. Springer, Berlin Göttingen Heidelberg, pp 200–321

    Google Scholar 

  • Kaldewey H (1963) Geschwindigkeit, Intensität und Kapazität des Wuchsstofftransports in geotropisch gereizten Fruchtstielen der Schachblume Fritillaria meleagris L. Planta 60:178–204

    CAS  Google Scholar 

  • Kaldewey H (1964) Papier- und dünnschichtchromatographische Trennung, Farbreaktionen und biologischer Test einiger Wachstumsregulatoren aus Fruchtstielen von Fritillaria meleagris L. In: Nitsch JP (ed) Régulateurs naturels de la croissance végétale. CNRS, Paris, pp 421–443

    Google Scholar 

  • Kaldewey H (1965 a) Wuchsstofftransport, Temperatur und Pflanzenalter. Ber Dtsch Bot Ges 78:(128)–(143)

    Google Scholar 

  • Kaldewey H (1965 b) Thermonastische Bewegungen der Sproßachsen von Fritillaria meleagris L. in Abhängigkeit von Wachstum und Wuchsstoff. Planta 67:55–74

    Google Scholar 

  • Kaldewey H (1966) Basipetal transport of auxins and their detection by thin-layer chromatography. Proc Int Symp Plant Stimulation. Sofia, pp 211–221

    Google Scholar 

  • Kaldewey H (1967 a) Weitere Beobachtungen zum basipetalen Auxintransport in Fruchtstielen von Fritillaria meleagris L. Intensität, Kapazität und Geschwindigkeit des Transports von Indol-3-essigsäure in Abhängigkeit vom Pflanzenalter. Ber Dtsch Bot Ges 80:238–251

    CAS  Google Scholar 

  • Kaldewey H (1967 b) Auxintransport in ungereizten Pflanzen. Wiss Z Univ Rostock, Math-Nat Reihe 16:487–494

    Google Scholar 

  • Kaldewey H (1968a) Auxin transport: general remarks concerning the terminology and the methods. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 1–23

    Google Scholar 

  • Kaldewey H (1968 b) Transport und Verteilung von Indol-3-(essigsäure-2–14C) in nickenden Sproßachsen. Vortr Gesamtgeb Bot 2:90–106

    Google Scholar 

  • Kaldewey H (1971) Geoepinasty, an example of gravimorphism. In: Gordon SA, Cohen MJ (eds) Gravity and the organism. Univ Chicago Press, Chicago London, pp 333–339

    Google Scholar 

  • Kaldewey H (1976) Considerations of geotropism in plants. In: Sneath PHA (ed) Life sciences and space research Vol 14. Akademie Verlag, Berlin, pp 21–36

    Google Scholar 

  • Kaldewey H, Ginkel U (1974) Influence of lycoricidinol on uptake and transport of IAA-2–14C in sections cut from different regions of the hypocotyl of light-grown seedlings of Citrullus edulis. In: Plant growth substances 1973. Hirokawa, Tokyo, pp 1079–1089

    Google Scholar 

  • Kaldewey H, Jacobs WP (1974) Movement and distribution of 14C within petioles of intact Coleus blumei (Labiatae) after application of indole-3-(acetic acid-2–14C) to the leaf surface. Am J Bot 61:699–706

    CAS  Google Scholar 

  • Kaldewey H, Jacobs WP (1975) The influence of humidity and gibberellic acid on movement and immobilization of radiocarbon within petioles of Coleus blumei Benth. after application of indole-3-(acetic acid-2–14C) to leaves of intact plants. Biochem Physiol Pflanz 168:401–410

    Google Scholar 

  • Kaldewey H, Kraus L (1972) Translocation and immobilization of radiocarbon in the hypocotyl and the primary root of Gossypium hirsutum L. after application of IAA-2–14C to intact light-grown seedlings. In: Kaldewey H, Vardar Y (eds) Hormonal regulation in plant growth and development. Verlag Chemie, Weinheim, pp 137–153

    Google Scholar 

  • Kaldewey H, Ginkel U, Lehmann I, Seiwert R (1973) Transport and immobilization of indoleacetic acid as affected by morphactins. I. Time course of auxin transport in sections excised from different hypocotyl regions of light-grown seedlings of Citrullus edulis. Proc Res Inst Pomol Skierniewice Pol Ser E Conf Symp 3:215–226

    Google Scholar 

  • Kaldewey H, Ginkel U, Wawczyniak G (1974) Auxin transport and water stress in pea (Pisum sativum L.). Ber Dtsch Bot Ges 87:563–576

    CAS  Google Scholar 

  • Kaldewey H, Ginkel U, Karmann R, Paland I (1977) Interaction in translocation of growth regulators in shoots with special reference to auxin transport as affected by two inhibitors, a morphactin and lycoricidinol. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New York, pp 91–99

    Google Scholar 

  • Katekar GF (1976) Inhibitors of the geotropic response in plants: a correlation of molecular structures. Phytochemistry 15:1421–1424

    CAS  Google Scholar 

  • Katekar GF, Geissler AE (1975) Auxin transport inhibitors. Fluorescein and related compounds. Plant Physiol 56:645–646

    PubMed  CAS  Google Scholar 

  • Katekar GF, Geissler AE (1977 a) Auxin transport inhibitors II. 2-(l-Pyrenoyl)benzoic acid, a potent inhibitor of polar auxin transport. Aust J Plant Physiol 4:321–325

    CAS  Google Scholar 

  • Katekar GF, Geissler AF (1977b) Auxin transport inhibitors III. Chemical requirements of a class of auxin transport inhibitors. Plant Physiol 60:826–829

    PubMed  CAS  Google Scholar 

  • Kato J (1958) Nonpolar transport of gibberellin through pea stem and a method for its determination. Science 128:1008–1009

    PubMed  CAS  Google Scholar 

  • Keitt GW, Baker RA (1966) Auxin activity of substituted benzoic acids and their effect on polar auxin transport. Plant Physiol 41:1561–1569

    PubMed  CAS  Google Scholar 

  • Kende H (1964) Preservation of chlorophyll in leaf sections by substances obtained from root exudate. Science 145:1066–1067

    Google Scholar 

  • Kende H (1965) Kinetin-like factors in the root exudate of sunflowers. Proc Natl Acad Sci USA 53:1302–1307

    PubMed  CAS  Google Scholar 

  • Kende H, Gardner GM (1976) Hormone binding in plants. Annu Rev Plant Physiol 27:267–290

    CAS  Google Scholar 

  • Kende H, Sitton D (1967) The physiological significance of kinetin- and gibberellin-like root hormones. Ann NY Acad Sci 144:235–243

    CAS  Google Scholar 

  • Kentzer T, Libbert E (1961) Blockade des Gibberellinsäuretransports in Hypocotylseg-menten durch Trijodbenzoesäure. Zugleich ein neuer Agarblocktest auf Gibberellin. Planta 56:23–27

    Google Scholar 

  • Kirk SC, Jacobs WP (1968) Polar movement of indole-3-acetic acid-14C in the roots of Lens and Phaseolus. Plant Physiol 43:675–682

    PubMed  CAS  Google Scholar 

  • Klämbt HD (1968) Cytokinine aus Helianthus annuus. Planta 82:170–178

    Google Scholar 

  • Kluge M, Reinhard E, Ziegler H (1964) Gibberellinaktivität von Siebröhrensäften. Naturwissenschaften 51:145–146

    CAS  Google Scholar 

  • Koevenig JL (1973) Nonpolar movement of N6-benzyladenine-14C in coleoptile, stem, petiole and floral organ sections. Can J Bot 51:2079–2083

    CAS  Google Scholar 

  • Koevenig JL, Jacobs WP (1972) Effect of light on basipetal movement of indoleacetic acid in green stem sections of Coleus. Plant Physiol 49:866–867

    PubMed  CAS  Google Scholar 

  • Koevenig JL, Sillix D (1973) Movement of IAA in sections from spider flower (Cleome hassleriana) stamen filaments. Am J Bot 60:231–235

    CAS  Google Scholar 

  • Konings H (1968) Auxin in root geotropism. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 237–250

    Google Scholar 

  • Konings H (1969) The influence of acropetally transported indoleacetic acid on the geotropism of intact pea roots and its modification by 2,3,5-triiodobenzoic acid. Acta Bot Neerl 18:528–537

    CAS  Google Scholar 

  • Konings H, Gayadin AP (1971) Transport, binding, and decarboxylation of carboxyl-labeled IAA-14C in intact pea roots. Acta Bot Neerl 20:646–654

    CAS  Google Scholar 

  • Kozlowski TT (ed) (1973) Shedding of plant parts. Academic Press, London New York

    Google Scholar 

  • Krelle E, Libbert E (1968) Inhibition of the polar auxin transport by a morphactin. Planta 80:317–320

    CAS  Google Scholar 

  • Krul WR (1977) Differences in velocity of auxin movement obtained by intercept and peak arrival methods. Physiol Plant 41:259–264

    CAS  Google Scholar 

  • Krul WR, Colclasure GC (1977) Effect of galactose and other monosaccharides on IAA movement in bean hypocotyl segments. Physiol Plant 41:249–253

    CAS  Google Scholar 

  • Kruszewski SP, Jacobs WP (1974) Polarity of thiamine movement through tomato petioles. Plant Physiol 54:310–311

    PubMed  CAS  Google Scholar 

  • Kulaeva ON (1962) The effects of roots on leaf metabolism in relation to the action of kinetin on leaves. Sov Plant Physiol, 9:181–189 (Engl transi)

    Google Scholar 

  • Kuse G (1953) Effect of triiodobenzoic acid on the growth of lateral bud and on tropism of petiole. Mem Coll Sci Kyoto B 20:207–215

    CAS  Google Scholar 

  • Lagerstedt HB, Langston RG (1966) Transport of kinetin-8–14C in petioles. Physiol Plant 19:734–740

    CAS  Google Scholar 

  • Lagerstedt HB, Langston RG (1967) Translocation of radioactive kinetin. Plant Physiol 42:611–622

    PubMed  CAS  Google Scholar 

  • Laibach F (1933) Wuchsstoffversuche mit lebenden Orchideenpollinien. Ber Dtsch Bot Ges 51:336–340

    CAS  Google Scholar 

  • Lamb CJ (1976) Hormone binding in plants. Nature 274:312–314

    Google Scholar 

  • Larsen P (1955) Growth substances in higher plants. In: Paech K, Tracey MV (eds) Modern methods of plant analysis Vol 3. Springer, Berlin Göttingen Heidelberg, pp 565–625

    Google Scholar 

  • Lavender DP, Sweet GB, Zaerr JB, Hermann RK (1973) Spring shoot growth in Douglas-flr may be initiated by gibberellins exported from the roots. Science 182:838–839

    PubMed  CAS  Google Scholar 

  • Lembi CA, Morré DJ, Thomson KSt, Hertel R (1971) 1-N-naphthylphthalamic-acid (NPA)-binding activity of a plasma membrane-rich fraction from maize coleoptiles. Planta 99:37–45

    CAS  Google Scholar 

  • Lenton JR, Bowen MR, Saunders PF (1968) Detection of abscisic acid in the xylem sap of willow by gas chromatography. Nature 220:86–87

    CAS  Google Scholar 

  • Leopold AC (1961) The transport of auxin. In: Ruhland W (ed) Encyclopedia of plant physiology Vol 14. Springer, Berlin Göttingen Heidelberg, pp 671–682

    Google Scholar 

  • Leopold AC (1963) The polarity of auxin transport. Brookhaven Symp Biol 16:218–234

    Google Scholar 

  • Leopold AC, de la Fuente RK (1967) The polarity of auxin transport. Ann NY Acad Sci 144:94–101

    CAS  Google Scholar 

  • Leopold AC, de la Fuente RK (1968) A view of polar auxin transport. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 24–47

    Google Scholar 

  • Leopold AC, Guernsey FS (1953) Auxin polarity in the Coleus plant. Bot Gaz 115:147–154

    CAS  Google Scholar 

  • Leopold AC, Hall OF (1966) A mathematical model of polar auxin transport. Plant Physiol 41:1476–1480

    PubMed  CAS  Google Scholar 

  • Leopold AC, Lam SL (1961) Polar transport of three auxins. In: Klein RM (ed) Plant growth regulation. Iowa State Univ Press, Ames, pp 411–418

    Google Scholar 

  • Leopold AC, Lam SL (1962) The auxin transport gradient. Physiol Plant 15:631–638

    CAS  Google Scholar 

  • Lepp LW, Peel AJ (1971) Patterns of translocation and metabolism of 14C-labelled IAA in the phloem of willow. Planta 96:62–73

    CAS  Google Scholar 

  • Letham DS, Goodwin PB, Higgins TJV (eds) (1978) Phytohormones and related compounds — a comprehensive treatise Vol I. The biochemistry of phytohormones and related compounds. Vol II. Phytohormones and the development of higher plants. Elsevier/North-Holland Biomedical Press, Amsterdam New York

    Google Scholar 

  • Liao SH, Hamilton RH (1966) Intracellular localization of growth hormones in plants. Science 151:822–824

    PubMed  CAS  Google Scholar 

  • Libbert E, Gerdes I (1964) Können Gibberelline an tropistischen Krümmungen beteiligt sein? (Untersuchungen über den Einfluß von Gibberellinsäure auf Krümmungsreaktionen und über den Quertransport von Gibberellinsäure in der Pflanze). Planta 61:245–258

    CAS  Google Scholar 

  • Little CHA, Goldsmith MHM (1967) Effect of inversion on growth and movement of indole-3-acetic acid in coleoptiles. Plant Physiol 42:1239–1245

    PubMed  CAS  Google Scholar 

  • Little ECS, Blackman GE (1963) The movement of growth regulators in plants. III. Comparative studies of transport in Phaseolus vulgaris. New Phytol 62:173–197

    CAS  Google Scholar 

  • Loeb J (1917) Influence of leaf upon root formation and geotropic curvature in the stem of Bryophyllum calycinum and the possibility of a hormone theory of these processes. Bot Gaz 63:25–50

    Google Scholar 

  • Loeffler JE, van Overbeek J (1964) Kinin activity in coconut milk. In: Nitsch JP (ed) Régulateurs naturels de la croissance végétale. CNRS, Paris, pp 77–82

    Google Scholar 

  • Luckwill LC, Whyte P (1968) Hormones in the xylem sap of apple trees. Soc Chem Ind (Lond) Monogr 31:87–101

    Google Scholar 

  • Lund EJ (1947) Bioelectric fields and growth. Univ Texas Press, Austin

    Google Scholar 

  • Lyon CJ (1963 a) Auxin factor in branch epinasty. Plant Physiol 38:145–152

    PubMed  CAS  Google Scholar 

  • Lyon CJ (1963 b) Auxin transport in leaf epinasty. Plant Physiol 38:567–574

    PubMed  CAS  Google Scholar 

  • Lyon CJ (1965 a) Auxin transport in geotropic curvatures of a branched plant. Plant Physiol 40:18–24

    PubMed  CAS  Google Scholar 

  • Lyon CJ (1965 b) Action of gravity on basipetal transport of auxin. Plant Physiol 40:953–961

    PubMed  CAS  Google Scholar 

  • Mai G (1934) Korrelationsuntersuchungen an entspreiteten Blattstielen mit lebenden Or-chideenpollinien als Wuchsstoff quelle. Jahrb Wiss Bot 79:681–713

    Google Scholar 

  • Maravolo NC (1976) Polarity and localization of auxin movement in the hepatic Marchanda polymorpha. Am J Bot 63:526–531

    CAS  Google Scholar 

  • Marigo G, Boudet AM (1977) Relations polyphénols-croissance: Mise en évidence d’un effect inhibiteur des composés phénoliques sur le transport polarisé de l’auxine. Physiol Plant 41:197–202

    CAS  Google Scholar 

  • Marré E, Lado P, Ferroni A, Ballarin Denti A (1974) Transmembrane potential increase induced by auxin, benzyladenine and fusicoccin. Correlation with proton extrusion and cell enlargement. Plant Sci Lett 2:257–265

    Google Scholar 

  • Martin HV, Elliott MC, Wangermann E, Pilet PE (1978) Auxin gradient along the root of the maize seedling. Planta 141:179–181

    CAS  Google Scholar 

  • McComb AJ (1964) The stability and movement of gibberellic acid in pea seedlings. Ann Bot 28:669–687

    CAS  Google Scholar 

  • McCready CC (1963) Movement of growth regulators in plants. I. Polar transport of 2,4-dichlorophenoxyacetic acid in segments from petioles of Phaseolus vulgaris. New Phytol 62:3–18

    CAS  Google Scholar 

  • McCready CC (1966) Translocation of growth regulators. Annu Rev Plant Physiol 17:283–294

    CAS  Google Scholar 

  • McCready CC (1968 a) The polarity of auxin movement in segments excised from petioles of Phaseolus vulgaris L. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1005–1023

    Google Scholar 

  • McCready CC (1968 b) The acropetal movement of auxin through segments excised from petioles of Phaseolus vulgaris L. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 108–129

    Google Scholar 

  • McCready CC, Jacobs WP (1963a) Movement of growth regulators in plants. II. Polar transport of radioactivity from indoleacetic acid-14C and 2,4-dichlorophenoxyacetic acid-14C in petioles of Phaseolus vulgaris. New Phytol 62:19–34

    CAS  Google Scholar 

  • McCready CC, Jacobs WP (1963 b) Movement of growth regulators in plants. IV. Relationship between age, growth, and polar transport in petioles of Phaseolus vulgaris. New Phytol 62:360–366

    Google Scholar 

  • McCready CC, Jacobs WP (1967) Movement of growth regulators in plants. V. A further note on the relationship between polar transport and growth. New Phytol 66:485–488

    CAS  Google Scholar 

  • Menary RC, van Staden J (1976) Effect of phosphorus nutrition and cytokinin on flowering in the tomato Lycopersicon esculentum Mill. Aust J Plant Physiol 3:201–205

    CAS  Google Scholar 

  • Menhenett R, Wareing PF (1975) Possible involvement of growth substances in response of tomato plants (Lycopersicon esculentum Mill.) to different soil temperatures. J Hortic Sci 50:381–397

    CAS  Google Scholar 

  • Miginiac E, Sossountzov L, Dugue N (1978) Modalités du transport et du métabolisme de l’AIA 14C ou 3H en relation avec la morphogenèse des bourgeons axillaires chez le Scrophularia arguta. Physiol Plant 44:335–344

    CAS  Google Scholar 

  • Milborrow BV (1968) Identification and measurement of (+)-abscisic acid in plants. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1531–1545

    Google Scholar 

  • Milborrow BV (1969) The occurrence and function of abscisic acid in plants. Sci Progr 57:533–558

    CAS  Google Scholar 

  • Mitchell EK, Davies PJ (1975) Evidence for three different systems of movement of indoleacetic acid in intact roots of Phaseolus coccineus. Physiol Plant 33:290–294

    CAS  Google Scholar 

  • Mitchinson GJ (1980) The dynamics of auxin transport. Proc R Soc Lond B 209:489–511

    Google Scholar 

  • Mittelheuser CJ, van Steveninck RFM (1971) Rapid action of abscisic acid on photosynthesis and stomatal resistance. Planta 97:83–86

    CAS  Google Scholar 

  • Morath M (1972) Some early effects of auxin and of geotropic exposure on coleoptiles. In: Kaldewey H, Vardar Y (eds) Hormonal regulation in plant growth and development. Verlag Chemie, Weinheim, pp 377–381

    Google Scholar 

  • Morgan DG (1964) Influence of α-naphthylphthalamic acid on the movement of indolyl-3-acetic acid in plants. Nature 201:476–477

    PubMed  CAS  Google Scholar 

  • Morgan DG, Söding H (1958) Über die Wirkungsweise von Phthalsäuremono-a-naph-thylamid (PNA) auf das Wachstum der Haferkoleoptile. Planta 52:235–249

    CAS  Google Scholar 

  • Morris DA (1970) Light and the transport and metabolism of indoleacetic acid in normal and albino dwarf pea seedlings. Planta 91:1–7

    CAS  Google Scholar 

  • Morris DA (1977) Transport of endogenous auxin in two-branched dwarf pea seedlings (Pisum sativum). Some implications for polarity and apical dominance. Planta 136:91–96

    CAS  Google Scholar 

  • Morris DA (1979) Effects of temperature on the velocity of exogenous auxin transport in intact chilling-sensitive and chilling-resistant plants. Planta 146:603–605

    CAS  Google Scholar 

  • Morris DA, Kadir GO (1972) Pathway of auxin transport in the intact pea seedling (Pisum sativum L.). Planta 107:171–182

    CAS  Google Scholar 

  • Morris DA, Thomas AG (1974) The specificity of auxin transport in intact pea seedlings (Pisum sativum L.). Planta 118:225–234

    CAS  Google Scholar 

  • Morris DA, Thomas AG (1978) A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J Exp Bot 29:147–157

    CAS  Google Scholar 

  • Morris DA, Winfield PJ (1972) Kinetin transport to axillary buds of dwarf pea (Pisum sativum L.). J Exp Bot 23:346–355

    CAS  Google Scholar 

  • Morris DA, Briant RE, Thomson PG (1969) The transport and metabolism of Relabelled indoleacetic acid in intact pea seedlings. Planta 89:178–197

    CAS  Google Scholar 

  • Morris DA, Kadir GO, Barry AJ (1973) Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid. Planta 110:173–182

    CAS  Google Scholar 

  • Morris RO, Zaerr JB, Chapman RW (1976) Trace enrichment of cytokinins from Douglas-fir xylem exudate. Planta 131:271–274

    CAS  Google Scholar 

  • Mothes K (1964) The role of kinetin in plant regulation. In: Nitsch JP (ed) Régulateurs naturels de la croissance végétale. CNRS, Paris, pp 131–140

    Google Scholar 

  • Mothes K, Engelbrecht L (1961) Kinetin-induced directed transport of substances in excised leaves in the dark. Phytochemistry 1:58–62

    CAS  Google Scholar 

  • Mozes R, Altman A (1977) Characteristics of root-to-shoot transport of cytokinin 6-ben-zylaminopurine in intact seedlings of Citrus aurantium. Physiol Plant 39:225–232

    CAS  Google Scholar 

  • Murakami Y (1968) Gibberellin-like substances in roots of Oryza sativa, Pharbitis nil and Ipomoea batatas and the site of their synthesis in the plant. Bot Mag (Tokyo) 81:334–343

    CAS  Google Scholar 

  • Murphy GJP (1980) A reassessment of the binding of naphthaleneacetic acid by membrane preparations from maize. Planta 149:417–426

    CAS  Google Scholar 

  • Myers RM (1940) Effect of growth substances on the abcission layer in leaves of Coleus. Bot Gaz 102:323–338

    CAS  Google Scholar 

  • Naqvi SM (1963) Transport studies with C14-indoleacetic acid and C14–2,4-dichlorophen-oxyacetic acid in Coleus stems. Ph D Thesis, Princeton Univ, Princeton

    Google Scholar 

  • Naqvi SM (1974) The effect of sugar supplement on the kinetics of indoleacetic acid-2–14C transport in Zea mays L. coleoptile. Z Pflanzenphysiol 71:1–5

    CAS  Google Scholar 

  • Naqvi SM (1975) Kinetics of auxin transport in light- and in dark-grown Zea mays L. coleoptile segments. Z Pflanzenphysiol 76:379–383

    CAS  Google Scholar 

  • Naqvi SM (1976) Auxin in Zea mays L. coleoptile segments: saturation of absorption and transport at various concentrations. Pak J Bot 8:47–52

    CAS  Google Scholar 

  • Naqvi SM, Gordon SA (1964) Auxin transport in corn coleoptile sections. I. The effect of carbohydrate supplement on transport polarity, velocity, and capacity. Argonne Nat Lab Report 6971:190–193

    Google Scholar 

  • Naqvi SM, Gordon SA (1965) Auxin transport in flowering and vegetative shoots of Coleus blumei Benth. Plant Physiol 40:116–118

    PubMed  CAS  Google Scholar 

  • Naqvi SM, Gordon SA (1966) Auxin transport in Zea mays L. coleoptiles. I. Influence of gravity on the transport of indoleacetic acid-2–14C. Plant Physiol 41:1113–1118

    PubMed  CAS  Google Scholar 

  • Naqvi SM, Dedolph RR, Gordon SA (1965) Auxin transport and geotropical potential in corn coleoptile sections. Plant Physiol 40:966–968

    PubMed  CAS  Google Scholar 

  • Newman IA (1959) Electrical determination of transport of 3-indole acetic acid in Avena. Nature 184:1728–1729

    CAS  Google Scholar 

  • Newman IA (1963) Electric potentials and auxin translocation in Avena. Aust J Biol Sci 16:629–646

    CAS  Google Scholar 

  • Newman IA (1965) Distribution of indolyl-3-acetic acid labelled with carbon-14 in Avena. Nature 205:1336–1337

    CAS  Google Scholar 

  • Newman IA (1970) Auxintransport in Avena. I. Indoleacetic acid-14C distribution and speeds. Plant Physiol 46:263–272

    PubMed  CAS  Google Scholar 

  • Newman IA (1974) Kinetics of auxin transport. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Roy Soc N Z, Wellington, pp 665–672

    Google Scholar 

  • Niedergang-Kamien E, Leopold AC (1957) Inhibitors of polar auxin transport. Physiol Plant 10:29–38

    CAS  Google Scholar 

  • Niedergang-Kamien E, Skoog F (1956) Studies on polarity and auxin transport in plants I. Physiol Plant 9:60–73

    CAS  Google Scholar 

  • Nielsen N (1924) Studies on the transmission of stimuli in the coleoptile of Avena. Dansk Bot Ark 4:1–45

    Google Scholar 

  • Nitsch JP (1968) Natural cytokinins. Soc Chem Ind (Lond) Monogr 31:111–123

    Google Scholar 

  • Nitsch JP, Nitsch C (1965) Présence de phytokinines et autre substances de croissance dans la sève d’Acer saccharum et de Vitis vinifera. Bull Soc Bot Fr 112:11–18

    CAS  Google Scholar 

  • Noodén LD, Leopold AC (1978) Phytohormones and the endogenous regulation of senescence and abscission. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: a comprehensive treatise Vol 2. Elsevier, Amsterdam New York, pp 329–369

    Google Scholar 

  • Nowacki J, Bandurski RS (1980) Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol 65:422–427

    PubMed  CAS  Google Scholar 

  • Ohwaki Y, Tsurumi S, Nagao M (1974) Auxin transport in Vicia roots. In: Plant growth substances 1973. Hirokawa, Tokyo, pp 1071–1078

    Google Scholar 

  • Osborne DJ (1968) A theoretical model for polar auxin transport. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 97–107

    Google Scholar 

  • Osborne DJ (1974) Hormones and the shedding of leaves and bolls. Cotton Grow Rev 51:256–365

    Google Scholar 

  • Osborne DJ, Black MK (1964) Polar transport of a kinin, benzyladenine. Nature 201:97

    CAS  Google Scholar 

  • Osborne DJ, McCready CC (1965) Transport of the kinin, N6-benzyladenine: Non-polar or polar? Nature 206:679–680

    CAS  Google Scholar 

  • Osborne DJ, Mullins MG (1969) Auxin, ethylene and kinetin in a carrier-protein model system for the polar transport of auxins in petiole segments of Phaseolus vulgaris. New Phytol 68:977–991

    CAS  Google Scholar 

  • Osborne DJ, Horton RF, Black MK (1968) Senescence in excised petiole segments: The relevance to auxin and kinin transport. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 79–96

    Google Scholar 

  • Ouitrakul R, Hertel R (1969) Effect of gravity and centrifugal acceleration on auxin transport in corn coleoptiles. Planta 88:233–243

    CAS  Google Scholar 

  • Paál A (1914) Über phototropische Reizleitungen. Ber Dtsch Bot Ges 32:499–503

    Google Scholar 

  • Paál A (1919) Über phototropische Reizleitung. Jahrb Wiss Bot 58:406–458

    Google Scholar 

  • Patrick JW, Woodley DJ (1973) Auxin physiology of decapitated stems of Phaseolus vulgaris L. treated with indol-3yl-acetic acid. J Exp Bot 24:949–957

    CAS  Google Scholar 

  • Pernet JJ, Pilet PE (1976) Indoleacetic acid movement in the root cap. Planta 128:183–184

    CAS  Google Scholar 

  • Phillips DA, Cleland CF (1972) Cytokinin activity from the phloem sap of Xanthium strumarium L. Planta 102:173–178

    CAS  Google Scholar 

  • Phillips IDJ, Härtung W (1974) Basipetal and acropetal transport of [3,4–3H]gibberellin A1 in short and long segments of Phaseolus coccineus second internode. Planta 116:109–121

    CAS  Google Scholar 

  • Phillips IDJ, Hartung W (1976) Longitudinal and lateral transport of [3,4–3H]gibberellin A1 and 3-indolyl(acetic acid-2–14C) in upright and geotropically responding green internode segments from Helianthus annuus. New Phytol 76:1–9

    CAS  Google Scholar 

  • Phillips IDJ, Jones RL (1964) Gibberellin-like activity in bleeding sap of root systems of Helianthus annuus detected by a new dwarf pea epicotyl assay and other methods. Planta 63:269–278

    CAS  Google Scholar 

  • Pickard BG, Thimann KV (1964) Transport and distribution of auxin during tropistic response. II. The lateral migration of auxin in phototropism of coleoptiles. Plant Physiol 39:341–350

    PubMed  CAS  Google Scholar 

  • Pilet PE (1951) Étude de la circulation des auxines dans la racine de Lens culinaris Medicus. Ber Schweiz Bot Ges 61:410–424

    Google Scholar 

  • Pilet PE (1960) Action de la lumière sur le transport d’acide β-indolyl-acétique marqué par du C14. Experientia 16:111

    PubMed  CAS  Google Scholar 

  • Pilet PE (1964) Auxin transport in roots of Lens culinaris. Nature 204:561–562

    CAS  Google Scholar 

  • Pilet PE (1965) Polar transport of radioactivity from 14C-labelled-β-indoleacetic acid in stems of Lens culinaris. Physiol Plant 18:687–702

    CAS  Google Scholar 

  • Pilet PE (1968) In vitro and in vivo auxin and cytokinin transport. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 993–1004

    Google Scholar 

  • Pilet PE (1977) Growth inhibitors in growing and geostimulated maize roots. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New York, pp 115–128

    Google Scholar 

  • Pilet PE, Guern J, Hugon E (1967) Sur le transport de la 6-benzylaminopurine-14C. Physiol Vég 5:261–270

    CAS  Google Scholar 

  • Poole RJ, Thimann KV (1964) Uptake of indole-3-acetic acid and indole-3-acetonitrile by Avena coleoptile sections. Plant Physiol 39:98–103

    PubMed  CAS  Google Scholar 

  • Purse JG (1975) Studies on endogenous cytokinins in plants. PhD Thesis Univ Wales

    Google Scholar 

  • Purse JG, Horgan R, Horgan JM, Wareing PF (1976) Cytokinins of sycamore spring sap. Planta 132:1–8

    CAS  Google Scholar 

  • Radin JW, Loomis RS (1974) Polar transport of kinetin in tissues of radish. Plant Physiol 53:348–351

    PubMed  CAS  Google Scholar 

  • Rasmussen HP, Bukovac MJ (1966) Naphthaleneacetic acid: localization in the abscission zone of the bean. Science 152:217–218

    PubMed  CAS  Google Scholar 

  • Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74:163–172

    CAS  Google Scholar 

  • Ray PM (1958) Destruction of auxin. Annu Rev Plant Physiol 9:81–118

    CAS  Google Scholar 

  • Ray PM, Dohrmann U, Hertel R (1977) Characterization of naphthaleneacetic acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol 59:357–364

    PubMed  CAS  Google Scholar 

  • Rayle DL, Ouitrakul R, Hertel R (1969) Effect of auxins on the auxin transport system in coleoptiles. Planta 87:49–53

    CAS  Google Scholar 

  • Reid DM, Burrows WJ (1968) Cytokinin-like and gibberellin-like activity in the spring sap of trees. Experientia 24:189–190

    PubMed  CAS  Google Scholar 

  • Reid DM, Carr DJ (1967) Effects of a dwarfing compound, CCC, on the production and export of gibberellin-like substances in root systems. Planta 73:1–11

    CAS  Google Scholar 

  • Reid DM, Crozier A (1971) Effects of waterlogging on the gibberellin content and growth of tomato plants. J Exp Bot 22:39–48

    CAS  Google Scholar 

  • Reid DM, Crozier A, Harvey BMR (1969) The effects of flooding on the export of gibberellins from the root to the shoot. Planta 89:376–379

    CAS  Google Scholar 

  • Reiff B, v. Guttenberg H (1961) Der polare Wuchsstofftransport von Helianthus annuus in seiner Abhängigkeit von Alter, Quellungszustand und Kohlenhydratversorgung des Gewebes. Flora 151: 44–72

    Google Scholar 

  • Reinhold L (1953) The uptake of indole-3-acetic acid by pea epicotyl segments and carrot disks. New Phytol 53:217–239

    Google Scholar 

  • Reisener HJ (1957) Versuche zum Geotropismus mit radioaktiver β-Indolylessigsäure. Naturwissenschaften 44:120

    CAS  Google Scholar 

  • Reisener HJ (1958) Untersuchungen über den Phototropismus der Haferkoleoptile. Z Bot 46:474–505

    CAS  Google Scholar 

  • Reisener HJ, Simon H (1960) Weitere Geotropismus-Versuche mit radioaktiver β-Indolylessigsäure (IES-2-C14). Z Bot 48:66–70

    CAS  Google Scholar 

  • Rivier L, Pilet PE (1974) Indolyl-3-acetic acid in cap and apex of maize roots: identification and quantification by mass fragmentography. Planta 120:107–112

    CAS  Google Scholar 

  • Robinson BJ, Forman M, Addicott FT (1968) Auxin transport and conjugation in cotton expiants. Plant Physiol 43:1321–1323

    PubMed  CAS  Google Scholar 

  • Rowntree RA, Morris DA (1979) Accumulation of 14C from exogenous labelled auxin in lateral root primordia of intact pea seedlings (Pisum sativum L.). Planta 144:463–466

    CAS  Google Scholar 

  • Rubery PH (1977) The specificity of carrier-mediated auxin transport by suspension-cultured crown gall cells. Planta 135:275–283

    CAS  Google Scholar 

  • Rubery PH (1978) Hydrogen ion dependence of carrier-mediated auxin uptake by suspension cultured crown gall cells. Planta 144:173–178

    Google Scholar 

  • Rubery PH (1979) The effects of 2,4-dinitrophenol and chemical modifying reagents on auxin transport by suspension cultured crown gall cells. Planta 144:173–178

    CAS  Google Scholar 

  • Rubery PH (1980) The mechanism of transmembrane auxin transport and its relation to the chemiosmotic hypothesis of the polar transport of auxin. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin Heidelberg New York, pp 50–60

    Google Scholar 

  • Rubery PH (1981) Auxin receptors. Annu Rev Plant Physiol 32:569–596

    CAS  Google Scholar 

  • Rubery PH, Sheldrake AR (1973) Effect of pH and surface charge on cell uptake of auxin. Nature 244:285–288

    CAS  Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121

    CAS  Google Scholar 

  • Rubinstein B, Leopold AC (1963) Analysis of the auxin control of bean leaf abscission. Plant Physiol 38:262–267

    PubMed  CAS  Google Scholar 

  • Rudich J, Sell HM, Baker LR (1976) Transport and metabolism of 3H-gibberellin A3 in dioecious cucumber seedlings. Plant Physiol 57:734–737

    PubMed  CAS  Google Scholar 

  • Sabnis DD, Hirshberg G, Jacobs WP (1969) Radioautographic analysis of the distribution of label from 3H-indoleacetic acid supplied to isolated Coleus internodes. Plant Physiol 44:27–36

    PubMed  CAS  Google Scholar 

  • Sachs J (1879) Über orthotrope und plagiotrope Pflanzenteile. Arb Bot Inst Würzburg 2:226–284

    Google Scholar 

  • Sachs T, Thimann KV (1964) Release of lateral buds from apical dominance. Nature 201:939–940

    Google Scholar 

  • Schrank AR (1951) Electrical polarity and auxins. In: Skoog F (ed) Plant growth substances. Univ Wisconsin Press, Madison, pp 123–140

    Google Scholar 

  • Scott BIH (1967) Electric fields in plants. Annu Rev Plant Physiol 23:235–258

    Google Scholar 

  • Scott TK (1972) Auxin and roots. Annu Rev Plant Physiol 23:235–258

    CAS  Google Scholar 

  • Scott TK, Briggs WR (1960) Auxin relationship in the Alaska pea (Pisum sativum). Am J Bot 47:492–499

    CAS  Google Scholar 

  • Scott TK, Briggs WR (1962) Recovery of native and applied auxin from the light-grown ‘Alaska’ pea seedlings. Am J Bot 49:1056–1063

    CAS  Google Scholar 

  • Scott TK, Briggs WR (1963) Recovery of native and applied auxin from the dark-grown ‘Alaska’ pea seedlings. Am J Bot 50:652–657

    CAS  Google Scholar 

  • Scott TK, Jacobs WP (1963) Auxin in Coleus stems: limitation of transport at higher concentration. Science 139:589–590

    PubMed  CAS  Google Scholar 

  • Scott TK, Jacobs WP (1964) Critical assessment of techniques for identifying the physiologically significant auxins in plants. In: Nitsch JP (ed) Régulateurs naturels de la croissance végétale. CNRS, Paris, pp 457–474

    Google Scholar 

  • Scott TK, Most BH (1972) The movement of growth hormones in sugar cane. In: Kaldewey H, Vardar Y (eds) Hormonal regulation in plant growth and development. Verlag Chemie, Weinheim, pp 58–67

    Google Scholar 

  • Scott TK, Pritchard JB (1968) The control of apical dominance in the Alaska pea. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 309–319

    Google Scholar 

  • Scott TK, Wilkins MB (1968) Auxin transport in roots. II. Polar flux of IAA in Zea roots. Planta 83:323–334

    CAS  Google Scholar 

  • Scott TK, Wilkins MB (1969) Auxin transport in roots. IV. Effects of light on IAA movement and geotropic responsiveness in Zea roots. Planta 87:249–258

    CAS  Google Scholar 

  • Šebánek J, Hink J (1967) Die Bedeutung der Attraktion von Gibberellin durch Indolyles-sigsäure bei der apikalen Dominanz. Planta 76:124–128

    Google Scholar 

  • Sembdner G, Weiland J, Aurich D, Schreiber K (1968) Isolation, structure and metabolism of a gibberellin glucoside. Soc Chem Ind Monogr 31:70–86

    Google Scholar 

  • Seth AK, Davies CR, Wareing PF (1966) Auxin effects on the mobility of kinetin in the plant. Science 151:587–588

    PubMed  CAS  Google Scholar 

  • Seubert E (1925) Über Wachstumsregulatoren in der Koleoptile von Avena. Z Bot 17:49–88

    Google Scholar 

  • Shaw S, Gardener G, Wilkins MB (1973) The lateral transport of IAA in intact coleoptiles of Avena sativa L. and Zea mays L. during geotropic stimulation. Planta 115:97–111

    CAS  Google Scholar 

  • Shaw S, Wilkins MB (1974) Auxin transport in roots. X. Relative movement of radioactivity from IAA in the stele and cortex of Zea root segments. J Exp Bot 25:199–207

    Google Scholar 

  • Sheldrake AR (1972) Polar auxin transport in leaves of monocotyledons. Nature 238:352–353

    CAS  Google Scholar 

  • Sheldrake AR (1973 a) Auxin transport in secondary tissues. J Exp Bot 24:87–96

    CAS  Google Scholar 

  • Sheldrake AR (1973b) Do coleoptile tips produce auxin? New Phytol 72:433–447

    CAS  Google Scholar 

  • Sheldrake AR (1973 c) The production of hormones in higher plants. Biol Rev 48:509–559

    CAS  Google Scholar 

  • Sheldrake AR (1974) The polarity of auxin transport in inverted cuttings. New Phytol 73:637–642

    CAS  Google Scholar 

  • Sheldrake AR (1979) Effects of osmotic stress on polar auxin transport in Avena mesocotyl sections. Planta 145:113–117

    CAS  Google Scholar 

  • Shen-Miller J (1973 a) Rhythmicity in basipetal transport of indoleacetic acid through coleoptiles. Plant Physiol 51:615–619

    PubMed  CAS  Google Scholar 

  • Shen-Miller J (1973 b) Rhythmic differences in the basipetal movement of indoleacetic acid between separated upper and lower halves of geotropically stimulated corn coleoptiles. Plant Physiol 52:166–170

    PubMed  CAS  Google Scholar 

  • Shindy WW, Asmundson CM, Smith OE, Kumamoto J (1973) Absorption and distribution of high specific radioactivity 2–14C-abscisic acid in cotton seedlings. Plant Physiol 52:443–447

    PubMed  CAS  Google Scholar 

  • Sitton D, Richmond A, Vaadia Y (1967) On the synthesis of gibberellins in roots. Phyto-chemistry 6:1101–1105

    CAS  Google Scholar 

  • Sitton D, Itai C, Kende H (1972) Decreased cytokinin production in the roots as a factor in shoot senescence. Planta 73:296–300

    Google Scholar 

  • Skene KGM (1967) Gibberellin-like substances in root exudate of Vitis vinifera. Planta 74:250–265

    CAS  Google Scholar 

  • Skene KGM (1972) Cytokinins in the xylem sap of grape vine canes. Changes in activity during coldstorage. Planta 104:89–92

    CAS  Google Scholar 

  • Skene KGM, Antcliff AJ (1972) A comparative study of cytokinin levels in bleeding sap of Vitis vinifera (L.) and the two grapevine rootstocks, Salt Creek and 1613. J Exp Bot 23:283–293

    CAS  Google Scholar 

  • Skene KGM, Kerridge GH (1967) Effect of root temperature on cytokinin activity in root exudate of Vitis vinifera L. Plant Physiol 42:1131–1139

    PubMed  CAS  Google Scholar 

  • Skene KGM, Osmond G (1968) Increases in the level of cytokinins in bleeding sap of Vitis vinifera L. after CCC treatment. Science 159:1477–1478

    PubMed  CAS  Google Scholar 

  • Smid N, Vardjan M (1970) Les cytokinines dans la sève printanière du bouleau Betula pendula Roth. Biol Vestn 18:27–36

    CAS  Google Scholar 

  • Smith CW, Jacobs WP (1968) The movement of IAA-14C in the hypocotyl of Phaseolus vulgaris. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 48–64

    Google Scholar 

  • Smith CW, Jacobs WP (1969) The movement of IAA-14C in the hypocotyl of Phaseolus vulgaris. Am J Bot 56:492–497

    CAS  Google Scholar 

  • Smith DJ, Schwabe WW (1980) Cytokinin activity in oak (Quercus robur) with particular reference to transplanting. Physiol Plant 48:27–32

    CAS  Google Scholar 

  • Smith FA, Raven JA (1976) H+ transport and regulation of cell pH. In: Lüttge U, Pitman MG (eds) Encyclopedia of plant physiology new series Vol 2A. Springer, Berlin Heidelberg New York, pp 317–346

    Google Scholar 

  • Söding H (1923) Werden von der Spitze der Haferkoleoptile Wuchshormone gebildet? Ber Dtsch Bot Ges 41:396–400

    Google Scholar 

  • Söding H (1925) Zur Kenntnis der Wuchshormone in der Haferkoleoptile. Jahrb Wiss Bot 64:587–603

    Google Scholar 

  • Söding H (1926) Über den Einfluß der jungen Infloreszenz auf das Wachstum ihres Schaftes. Jahrb Wiss Bot 65:611–635

    Google Scholar 

  • Söding H (1952) Die Wuchsstofflehre. Thieme, Stuttgart

    Google Scholar 

  • Stark P (1925) Zur Methodik chemotropischer Reizung bei Dikotyledonenkeimstengeln I. Ber Dtsch Bot Ges 43:568–575

    Google Scholar 

  • Steeves TA, Briggs WR (1960) Morphogenetic studies on Osmunda cinnamomea L. The auxin relationships of expanding fronds. J Exp Bot 11:45–67

    CAS  Google Scholar 

  • Sussman MR, Goldsmith MHM (1980) Solubilization of the receptor for N-l-naph-thylphthalamic acid. Plant Physiol 66:1074–1078

    PubMed  CAS  Google Scholar 

  • Sweet GB, Zaerr JB, Lavender DP (1974) The effect of some manipulations on the level of gibberellins in seedling Douglas fir. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanism of regulation of plant growth. Roy Soc N Z, Wellington, pp 709–713

    Google Scholar 

  • Tal M, Imber D, Itai C (1970) Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. Plant Physiol 46:367–373

    PubMed  CAS  Google Scholar 

  • Tepper HB, Brossard D (1969) Voie de transport de l’acide indolylacétique chez Zea et chez le Coleus. CR Acad Sci Paris Ser D 269:567–569

    Google Scholar 

  • Thimann KV (1972) The natural plant hormones. In: Steward FC (ed) Plant physiology. A treatise Vol VIB: physiology of development: the hormones. Academic Press, London New York

    Google Scholar 

  • Thimann KV, Wardlaw IF (1963) The effect of light on the uptake and transport of indoleacetic acid in the green stem of the pea. Physiol Plant 16:368–377

    CAS  Google Scholar 

  • Thomson KSt, Leopold AC (1974) In vitro binding of morphactins and 1 -N-naphthyl-phthalamic acid in corn coleoptiles and their effects on auxin transport. Planta 115:259–270

    CAS  Google Scholar 

  • Thomson KSt, Hertel R, Müller S, Tavares JE (1973) 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid: In vitro binding to particulate cell fractions and action on auxin transport in corn coleoptiles. Planta 109:337–352

    CAS  Google Scholar 

  • Thornton RM, Thimann KV (1967) Transient effects of light on auxin transport in the Avena coleoptile. Plant Physiol 42:247–257

    PubMed  CAS  Google Scholar 

  • Tsurumi S, Ohwaki Y (1978) Transport of 14C-labeled indoleacetic acid in Vicia root segments. Plant Cell Physiol 19:1195–1206

    CAS  Google Scholar 

  • Tsurumi S, Wada S (1980) Transport of shoot- and cotyledon-applied indole-3-acetic acid to Vicia faba root. Plant Cell Physiol 21:803–816

    CAS  Google Scholar 

  • Ueda M, Bandurski RS (1969) A quantitative estimation of alkahlabile indole-3-acetic acid compounds in dormant and germinating maize kernels. Plant Physiol 44:1175–1181

    PubMed  CAS  Google Scholar 

  • Van der Weij HG (1932) Der Mechanismus des Wuchsstofftransportes. Recl Trav Bot Néerl 29:379–496

    Google Scholar 

  • Van der Weij H G (1934) Der Mechanismus des Wuchsstofftransportes IL Recl Trav Bot Néerl 31:810–857

    Google Scholar 

  • Van de Westringh C, Veldstra H (1958) On the influence of the polar group on growth substance transport. Comparative investigations with 14C-labelled indolylacetic acid and indolylmethanesulphonic acid. Recl Trav Chim Pays-Bas Belg 77:1114–1128

    Google Scholar 

  • Van Staden J (1976) Occurrence of a cytokinin glucoside in the leaves and honeydew of Salix babylonica. Physiol Plant 36:225–228

    Google Scholar 

  • Van Staden J, Davey JE (1976 a) Cytokinin translocation in xylem sap of herbaceous plants. Z Pflanzenphysiol 77:377–382

    Google Scholar 

  • Van Staden J, Davey JE (1976b) Note on cytokinins in the xylem sap of Protea compacta. J S Afr Bot 42:13–15

    Google Scholar 

  • Van Staden J, Dimalla GGA (1977) A comparison of the endogenous cytokinins in the roots and xylem exudate of nematode-resistent and susceptible tomato cultivars. J Exp Bot 28:1351–1356

    Google Scholar 

  • Van Staden J, Menary RC (1976) Identification of cytokinins in the xylem sap of tomato. Z Pflanzenphysiol 78:262–265

    Google Scholar 

  • Vardar Y (1964) Experiments with Helianthus annuus hypocotyls on IAA-14C transport in relation with temperature. Ber Schweiz Bot Ges 74:229–236

    CAS  Google Scholar 

  • Vardar Y (ed) (1968 a) The transport of plant hormones. North Holland, Amsterdam

    Google Scholar 

  • Vardar Y (1968b) Agents modifying the longitudinal transport of auxin. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 156–191

    Google Scholar 

  • Vardar Y (1970) Studies on the metabolic interaction of triiodobenzoic acid during the transport of externally applied indoleacetic acid. Ber Schweiz Bot Ges 80:438–440

    Google Scholar 

  • Veen H (1966) Transport, immobilisation and location of naphthylacetic acid-2–14C in Coleus expiants. Acta Bot Neerl 15:419–433

    CAS  Google Scholar 

  • Veen H (1969) Auxin transport, auxin metabolism and ageing. Acta Bot Neerl 18:447–454

    CAS  Google Scholar 

  • Veen H (1972) Relationship between transport and metabolism of α-naphthaleneacetic acid and a-decalylacetic acid in segments of Coleus. Planta 103:35–44

    CAS  Google Scholar 

  • Veen H (1975) Non-polar translocation of abscisic acid in petiole segments of Coleus. Acta Bot Neerl 24:54–62

    Google Scholar 

  • Veen H, Frissel MJ (1975) Simulation of hormone transport in petiole segments of Coleus. Physiol Plant 34:208–215

    CAS  Google Scholar 

  • Veen H, Jacobs WP (1969 a) Transport and metabolism of indole-3-acetic acid in Coleus petiole segments of increasing age. Plant Physiol 44:1157–1162

    PubMed  CAS  Google Scholar 

  • Veen H, Jacobs WP (1969 b) Movement and metabolism of kinetin-14C and of adenine-14C in Coleus petioles of increasing age. Plant Physiol 44:1277–1284

    PubMed  CAS  Google Scholar 

  • Venis MA (1977) Affinity labels for auxin binding sites in corn coleoptile membranes. Planta 134:145–149

    CAS  Google Scholar 

  • Vonk CR (1974) Studies on phloem exudation from Yucca flaccida Haw. XIII. Evidence for the occurrence of a cytokinin nucleotide in the exudate. Acta Bot Neerl 23:541–548

    CAS  Google Scholar 

  • Vonk CR (1978) Formation of cytokinin nucleotides in a detached inflorescence stalk and the occurrence of nucleotides in phloem exudate from attached Yucca plants. Physiol Plant 44:161–166

    CAS  Google Scholar 

  • Vonk CR (1979) Origin of cytokinins transported in the phloem. Physiol Plant 46:235–240

    CAS  Google Scholar 

  • Wagner H, Michael G (1971) Der Einfluß unterschiedlicher Stickstoffversorgung auf die Cytokininbildung in Wurzeln von Sonnenblumenpflanzen. Biochem Physiol Pflanz 162:147–158

    CAS  Google Scholar 

  • Wangermann E (1968) The distribution of indolylacetic acid in Coleus stems. In: Vardar Y (ed) The transport of plant hormones. North-Holland, Amsterdam, pp 65–78

    Google Scholar 

  • Wangermann E (1970) Autoradiographic localization of soluble and insoluble 14C from [14C]indolylacetic acid supplied to isolated Coleus internodes. New Phytol 69:919–927

    CAS  Google Scholar 

  • Wangermann E (1974) The pathway of transport of applied indolyl-acetic acid through internode segments. New Phytol 73:623–636

    CAS  Google Scholar 

  • Wangermann E (1977) Further localization of auxin transport through internode segments. New Phytol 79:501–504

    CAS  Google Scholar 

  • Wangermann E, Withers LA (1978) Auxin transport characteristics and cellular ultra-structure of different types of parenchyma. New Phytol 81:1–17

    CAS  Google Scholar 

  • Webster J, Wilkins MB (1974) Lateral movement of radioactivity from [14C]gibberellic acid (GA3) in roots and coleoptiles of Zea mays L. seedlings during geotropic stimulation. Planta 121:303–308

    CAS  Google Scholar 

  • Weis A (1969) Untersuchungen über Wachstumsregulatoren in Blüten von Narcissus pseudonarcissus L. und zum Auxintransport in Griffeln von Digitalis purpurea L. Diss Univ d Saarlandes, Saarbrücken

    Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Rec Trav Bot Néerl 25:1–116

    Google Scholar 

  • Went FW (1932) Eine botanische Polaritätstheorie. Jahrb Wiss Bot 76:528–557

    Google Scholar 

  • Went FW (1941) Polarity of auxin transport in inverted Tagetes cuttings. Bot Gaz 103:386–390

    CAS  Google Scholar 

  • Went FW, White R (1939) Experiments on the transport of auxin. Bot Gaz 100:465–484

    CAS  Google Scholar 

  • Werblin TP, Jacobs WP (1967) Auxin transport and polarity in Coleus petioles of increasing age. Wiss Z Univ Rostock Math Naturwiss Reihe 16:495–497

    Google Scholar 

  • Wetmore RH, Jacobs WP (1953) Studies on abscission: the inhibiting effect of auxin. Am J Bot 40:272–276

    CAS  Google Scholar 

  • Whitehouse RL, Zalik S (1967) Transport of indole-3-acetic acid-T-14C and tryptophan-1–14C in seedlings of Phaseolus coccineus L. and Zea mays L. Plant Physiol 42:1362–1372

    Google Scholar 

  • Whitehouse RL, Zalik S (1968) Translocation of radioactively labelled 3-indoleacetic acid and tryptophan in seedlings of Phaseolus coccineus L. and Zea mays L. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 977–991

    Google Scholar 

  • Wightman F, Thimann KV (1980) Hormonal factors controlling the initiation and the development of lateral roots. I. Sources of primordia-inducing substances in the primary root of pea seedlings. Physiol Plant 49:13–20

    CAS  Google Scholar 

  • Wightman F, Schneider EA, Thimann KV (1980) Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth factors on lateral root formation in pea roots. Physiol Plant 49:304–314

    CAS  Google Scholar 

  • Wilkins MB, Cane AR (1970) Auxin transport in roots. V. Effects of temperature on the movement of IAA in Zea roots. J Exp Bot 21:195–211

    CAS  Google Scholar 

  • Wilkins MB, Cane AR, McCorquodale I (1972) Auxin transport in roots. VII. Uptake and movement of radioactivity from IAA-14C by Zea roots. Planta 105:93–113

    CAS  Google Scholar 

  • Wilkins MB, Martin N (1967) The dependence of basipetal polar transport of auxin upon aerobic metabolism. Plant Physiol 42:831–839

    PubMed  CAS  Google Scholar 

  • Wilkins MB, Nash LJ (1974) Movement of radioactivity from [3H]GA3 in geotropically stimulated coleoptiles of Zea mays. Planta 115:245–251

    CAS  Google Scholar 

  • Wilkins MB, Scott TK (1968) Auxin transport in roots. III. Dependence of polar flux of IAA in Zea roots upon metabolism. Planta 83:335–346

    CAS  Google Scholar 

  • Wilkins MB, Shaw S (1967) Geotropic response of coleoptiles under anaerobic conditions. Plant Physiol 42:1111–1113

    PubMed  CAS  Google Scholar 

  • Wilkins MB, Whyte P (1968) Polar transport of auxin in Zea coleoptiles under anaerobic conditions. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1051–1062

    Google Scholar 

  • Wilkins MB, Woodcock AER (1965) Origin of the geoelectric effect in plants. Nature 208:990–992

    CAS  Google Scholar 

  • Winter A (1967) The promotion of the immobilization of auxin in Avena coleoptiles by triiodobenzoic acid. Physiol Plant 20:330–336

    CAS  Google Scholar 

  • Winter A (1968) 2,3,5-Triiodobenzoic acid and the transport of 3-indoleacetic acid. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1063–1076

    Google Scholar 

  • Wochok ZS, Sussex IM (1973) Morphogenesis in Selaginella. Auxin transport in the stem. Plant Physiol 51:646–650

    PubMed  CAS  Google Scholar 

  • Woodcock AER, Hertz CH (1972) The geoelectric effect in plant shoots. V. A discussion. J Exp Bot 23:953–957

    Google Scholar 

  • Woodcock AER, Wilkins MB (1970) The geoelectric effect in plant shoots. III. Dependence upon auxin concentration gradients and aerobic metabolism. J Exp Bot 21:985–996

    CAS  Google Scholar 

  • Woodcock AER, Wilkins MB (1971) The geoelectric effect in plant shoots. J Exp Bot 22:512–525

    Google Scholar 

  • Wooley DJ, Wareing PF (1972) The interaction between growth promotors in apical dominance. I. Hormonal interaction, movement and metabolism of a cytokinin in rootless cuttings. New Phytol 71:781–793

    Google Scholar 

  • Yamaki T, Fujii T (1968) Effect of light on auxin transport through the node tissue of Avena seedling. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1025–1036

    Google Scholar 

  • Yeomans LM, Audus LJ (1964) Auxin transport in roots. Vicia faba. Nature 204:559–562

    CAS  Google Scholar 

  • Yoshida R, Oritani T (1974) Effects of nitrogen topdressing on cytokinin content in the root exudate of rice plant. Proc Crop Sci Soc Jpn 43:47–51

    Google Scholar 

  • Yoshida R, Oritani T, Nishi A (1971) Kinetin-like factors in the root exudate of rice plants. Plant Cell Physiol 12:89–94

    CAS  Google Scholar 

  • Zaerr JB (1968) Transport gradient of indoleacetic acid in pine seedlings. Physiol Plant 21:1265–1269

    CAS  Google Scholar 

  • Zamski E, Tsivion Y (1977) Translocation in plants possessing supernumerary phloem. I. 14C-assimilates and auxin in the internal phloem of tobacco (Nicotiana tabacum L.). J Exp Bot 28:117–126

    CAS  Google Scholar 

  • Zamski E, Wareing PF (1974) Vertical and radial movement of auxin in young sycamore plants. New Phytol 73:61–69

    CAS  Google Scholar 

  • Zeevaart JAD (1977) Sites of abscisic acid synthesis and metabolism in Ricinus communis. Plant Physiol 59:788–791

    PubMed  CAS  Google Scholar 

  • Ziegler H (1973) Wasserumsatz und Stoffbewegungen. Bericht über die Arbeiten zum Wuchsstofftransport im Parenchym. Fortschr Bot 35:67–75

    Google Scholar 

  • Zwar JA, Rijven AHGC (1956) Inhibition of transport of indole-3-acetic acid in the etiolated hypocotyl of Phaseolus vulgaris L. Aust J Biol Sci 9:528–538

    CAS  Google Scholar 

  • Zweig G, Yamaguchi S, Mason GM (1961) Translocation of C14-gibberellin in red kidney bean, normal corn and dwarf corn. Adv Chem Ser 28:122–134

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kaldewey, H. (1984). Transport and Other Modes of Movement of Hormones (Mainly Auxins). In: Scott, T.K. (eds) Hormonal Regulation of Development II. Encyclopedia of Plant Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67731-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67731-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67733-5

  • Online ISBN: 978-3-642-67731-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics