Skip to main content

Measurement of Fluxes across Membranes

  • Chapter
Transport in Plants II

Part of the book series: Encyclopedia of Plant Physiology ((919,volume 2 / A))

Abstract

Other Chapters are devoted to the relationships between fluxes of ions and the driving forces that produce them—concentration differences, electric potential differences, flows of solvent or solute, metabolic flows. This Chapter is concerned with the problem of measuring such fluxes across cellular membranes, and with the related problem of determining the distribution of ions between the various cellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bradley, J.V.: Distribution-free Statistical Tests. Englewood Cliffs: Academic Press 1968.

    Google Scholar 

  • Briggs, G.E.: Some aspects of free space in plant tissue. New Phytologist 56, 305–324 (1957 a).

    Article  Google Scholar 

  • Briggs, G. E.: Estimation of the flux of ions into and out of the vacuole of a plant cell. J. Exptl. Bot. 8, 319–322 (1957b).

    Article  CAS  Google Scholar 

  • Briggs, G.E., Hope, A.B., Pitman, M.G.: Exchangeable ions in beet disks at low temperature. J. Exp. Botany 9, 128–141 (1958a).

    Article  CAS  Google Scholar 

  • Briggs, G.E., Hope, A.B., Pitman, M.G.: Measurement of ionic fluxes in red beet tissues using radioisotopes. Radioisotopes Sci. Res. Proc. Int. Conf. Paris 4, 391–400 (1958 b).

    Google Scholar 

  • Briggs, G.E., Hope, A.B., Robertson, R.N.: Electrolytes and plant cells. Oxford: Blackwell 1961.

    Google Scholar 

  • Charley, J.L., Jenny, H.: Two-phase studies on availability of iron in calcareous soils. IV. Decomposition of iron oxide by roots, and Fe diffusion in roots. Agrochimica 5, 99–107 (1961).

    CAS  Google Scholar 

  • Conover, W.J.: Practical Nonparametric Statistics. New York: Wiley and Sons 1971.

    Google Scholar 

  • Coster, H.G.: Chloride in cells of Chaa australis. Australian J. Biol. Sci. 19, 545–554 (1966).

    CAS  Google Scholar 

  • Cram, W. J.: Compartmentation and exchange of chloride in carrot root tissue. Biochim. Biophys. Acta 163, 339–353 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Cram, W.J.: Short term influx as a measure of influx across the plasmalemma. Plant Physiol. 44, 1013–1015 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Cram, W.J.: Chloride fluxes in cells of the isolated root cortex of Zea mays. Australian J. Biol. Sci. 26, 757–779 (1973).

    CAS  Google Scholar 

  • Cram, W.J., Laties, G.G.: Th use of short-term and quasi-steady influx in estimating plasmalemma and tonoplast influx in barley root cells at various external and internal chloride concentrations. Australian J. Biol. Sci. 24, 633–646 (1971).

    CAS  Google Scholar 

  • Dainty, J., Hope, A.B.: Ionic relations of cells of Chara australis. I. Ion exchange in the cell wall. Australian J. Biol. Sci. 12, 395–411 (1959).

    CAS  Google Scholar 

  • Dainty, J., Hope, A.B.: The Electric double layer and the donnan equilibrium in relation to plant cell walls. Australian J. Biol. Sci. 14, 541–551 (1961).

    CAS  Google Scholar 

  • Diamond, J. M., Solomon, A.K.: Intracellular compartments in Nitella axillaris. J. Gen. Physiol. 42, 1105–1121 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Eshel, A., Waisel, Y.: Variations in uptake of sodium and rubidium along barley roots. Physiol. Plant. 28, 557–560 (1973).

    Article  CAS  Google Scholar 

  • Etherton, B.: Steady state sodium and rubidium effluxes in Pisum sativum roots. Plant Physiol. 42, 685–690 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Findlay, G. P., Hope, A. B., Walker, N. A.: Quantization of a flux ratio in charophytes. Biochim. Biophys. Acta 233, 55–162 (1971).

    Google Scholar 

  • Findlay, G. P., Hope, A.B., Williams, E.J.: Ionic relations of marine algae. II. Griffithsia: ionic fluxes. Australian J. Biol. Sci. 23, 323–338 (1970).

    CAS  Google Scholar 

  • Hodgkin, A.L., Keynes, R.D.: The potassium permeability of a giant nerve fibre. J. Physiol. 128, 61–88 (1955).

    PubMed  CAS  Google Scholar 

  • Hope, A.B.: Ion transport and membranes. London: Butterworth 1971.

    Google Scholar 

  • Hope, A. B., Findlay, G. P.: The action potential in Chara. Plant Cell Physiol. (Tokyo) 5, 377–379 (1964).

    CAS  Google Scholar 

  • Hope, A. B., Simpson, A., Walker, N. A.: The efflux of chloride from cells of Nitella and Chara. Australian J. Biol. Sci. 19, 355–362 (1966).

    CAS  Google Scholar 

  • Hope, A. B., Walker, N. A.: Ionic relations of Chara australis. IV. Membrane potential differences and resistances. Australian J. Biol. Sci. 14, 26–36 (1961).

    CAS  Google Scholar 

  • Hope, A.B., Walker, N.A.: The physiology of giant algal cells. Cambridge: Cambridge University Press 1975.

    Google Scholar 

  • Jacoby, B., Dagan, J.: Effects of age on sodium fluxes in primary bean leaves. Physiol. Plantarum 22, 29–36 (1969).

    Article  Google Scholar 

  • Jeschke, W.D.: K+-Stimulated Na+ efflux and selective transport in barley roots. In: Ion transport in plants (W.P. Anderson, ed.), p. 285–296. London-New York: Academic Press 1973.

    Google Scholar 

  • Kishimoto, U., Tazawa, M.: Ionic composition of the cytoplasm of Nitella flexilis. Plant Cell Physiol. (Tokyo) 6, 507–518 (1965).

    CAS  Google Scholar 

  • Larkum, A. W. D.: Ionic relations of chloroplasts in vivo. Nature 218, 447–449 (1968).

    Article  CAS  Google Scholar 

  • Lefebvre, J., Gillet, C.: Effects des cations externes sur l’activité des chlorures cytoplasmiques dosés par l’electrode Ag—AgCl introduite dans la cellule de Nitella. Biochim. Biophys. Acta 249, 556–563 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Lüttge, U., Pallaghy, C.K.: Unerwartete Kinetik des Efflux und der Aufnahme von Ionen bei verschiedenen Pflanzengeweben. Z. Pflanzenphysiol. 67, 359–366 (1972).

    Google Scholar 

  • Macrobbie, E.A.C.: Factors affecting the fluxes of potassium and chloride ions in Nitella translucens. J. Gen. Physiol. 47, 859–877 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Macrobbie, E.A.C.: Metabolic effects on ion fluxes in Nitella translucens. II. Tonoplast fluxes. Australian J. Biol. Sci. 19, 371–383 (1966).

    Google Scholar 

  • Macrobbie, E.A.C.: Ion fluxes to the vacuole of Nitella translucens. J. Exptl. Bot. 20, 236–256 (1969).

    Article  CAS  Google Scholar 

  • Macrobbie, E.A.C.: The active transport of ions in plant cells. Quart. Revs. Bioph. 3, 251–294 (1970a).

    Article  CAS  Google Scholar 

  • Macrobbie, E.A.C.: Quantized fluxes of chloride to the vacuole of Nitella translucens. J. Exptl. Bot. 21, 335–344 (1970b).

    Article  CAS  Google Scholar 

  • Macrobbie, E. A.C.: Vacuolar fluxes of chloride and bromide in Nitella translucens. J. Exptl. Bot. 22, 487–502 (1971).

    Article  CAS  Google Scholar 

  • Macrobbie, E.A.C.: Vacuolar ion transport in Nitella. In: Ion transport in plants. (W.P. Anderson, ed.), p. 431–446. London-New York: Academic Press 1973.

    Google Scholar 

  • Macrobbie, E.A.C., Dainty, J.: Ion transport in Nitellopsis obtusa. J. Gen. Physiol. 42, 335–353 (1958 a).

    Article  PubMed  CAS  Google Scholar 

  • Macrobbie, E.A.C., Dainty, J.: Sodium and potassium distribution and transport in the seaweed Rhodymenia palmata. Physiol. Plantarum 11, 782–801 (1958 b).

    Article  CAS  Google Scholar 

  • Magar, M.E.: Data analysis in biochemistry and biophysics. New York: Academic Press 1972.

    Google Scholar 

  • Mailman, D.S., Mullins, L.J.: The Electrical measurement of chloride fluxes in Nitella. Australian J. Biol. Sci. 19, 385–398 (1966).

    CAS  Google Scholar 

  • Osmond, C.B.: Ion absorption in Atriplex leaf tissue. I. Absorption by mesophyll cells. Australian J.Biol. Sci. 21, 1119–1130 (1968).

    CAS  Google Scholar 

  • Pallaghy, C.K., Lüttge, U., Willert, K. von: Cytoplasmic compartmentation and parallel pathways of ion uptake in plant root cells. Z. Pflanzenphysiol. 62, 51–57 (1970).

    CAS  Google Scholar 

  • Pallaghy, C.K., Scott, B.I.H.: The Electrochemical state of cell of broad bean roots. II. Potassium kinetics in excised root tissue. Australian J. Biol. Sci. 22, 585–600 (1969).

    CAS  Google Scholar 

  • Pitman, M.G.: The determination of the salt relations of the cytoplasmic phase in cells of beetroot tissue. Australian J. Biol. Sci. 16, 647–668 (1963).

    CAS  Google Scholar 

  • Pitman, M.G.: Ion exchange and diffusion in roots of Hordeum vulgare. Australian J. Biol. Sci. 18, 541–545 (1965).

    CAS  Google Scholar 

  • Pitman, M.G.: Uptake and transport of ions in barley seedlings. I. Estimation of chloride fluxes in cells of excised roots. Australian J. Biol. Sci. 24, 407–421 (1971).

    CAS  Google Scholar 

  • Pitman, M.G.: Uptake and transport of ions in barley seedlings. II. Evidence for two active stages in transport to the shoot. Australian J. Biol. Sci. 25, 243–257 (1972).

    CAS  Google Scholar 

  • Pitman, M. G., Lüttge, U., Kramer, D., Ball, E.: Free space characteristics of barley leaf slices. Australian J. Plant. Physiol. 1, 65–75 (1974).

    Article  CAS  Google Scholar 

  • Sheppard, C.W.: Basic principles of the tracer method. New York: Wiley and Sons 1962.

    Google Scholar 

  • Slayman, C.W., Tatum, E.L.: Potassium transport in Neurospora. II. Measurement of steady-state potassium fluxes. Biochim. Biophys. Acta 102, 149–160 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Spanswick, R.M., Williams, E.J.: Electric potentials and Na, K and Cl concentrations in the vacuole and cytoplasm of Nitella translucens. J. Exp. Botany 15, 193–200 (1964).

    Article  CAS  Google Scholar 

  • Spanswick, R.M., Williams, E.J.: Calcium fluxes and membrane potentials in Nitella translucens. J. Exp. Botany 16, 463–473 (1965).

    Article  CAS  Google Scholar 

  • Steveninck, R.F.M. van: Potassium fluxes in red beet tissue during its “lag phase”. Physiol. Plantarum 15, 211–215 (1962).

    Article  Google Scholar 

  • Tazawa, M., Kishimoto, U., Kikuyama, M.: Potassium, sodium and chloride in the protoplasm of characeae. Plant Cell Physiol. (Tokyo) 15, 103–110 (1974).

    CAS  Google Scholar 

  • Tyree, M.T.: Determination of transport constants of isolated Nitella cell walls. Can. J. Botany 46, 317–327 (1968).

    Article  CAS  Google Scholar 

  • Vickery, R.S., Bruinsma, J.: Compartments and permeability for potassium in developing fruits of tomato (Lycopersicon esculentum Mill.). J. Exp. Botany 24, 1261–1270 (1973).

    Article  CAS  Google Scholar 

  • Walker, N. A.: Discussion. In: Ion transport in plants (W. P. Anderson, ed.), p. 459–461. London-New York: Academic Press 1973.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Walker, N.A., Pitman, M.G. (1976). Measurement of Fluxes across Membranes. In: Lüttge, U., Pitman, M.G. (eds) Transport in Plants II. Encyclopedia of Plant Physiology, vol 2 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66227-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66227-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66229-4

  • Online ISBN: 978-3-642-66227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics