Skip to main content

14 Agaricomycetes

  • Chapter
  • First Online:

Part of the book series: The Mycota ((MYCOTA,volume 7A))

Abstract

Agaricomycetes includes ca. 21,000 described species of mushroom-forming fungi that function as decayers, pathogens, and mutualists in both terrestrial and aquatic habitats. The morphological diversity of Agaricomycete fruiting bodies is unparalleled in any other group of fungi, ranging from simple corticioid forms to complex, developmentally integrated forms (e.g., stinkhorns). In recent years, understanding of the phylogenetic relationships and biodiversity of Agaricomycetes has advanced dramatically, through a combination of polymerase chain reaction-based multilocus phylogenetics, phylogenomics, and molecular environmental surveys. Agaricomycetes is strongly supported as a clade and includes several groups formerly regarded as Heterobasidiomycetes, namely the Auriculariales, Sebacinales, and certain Cantharellales (Tulasnellaceae and Ceratobasidiaceae). The Agaricomycetes can be divided into 20 mutually exclusive clades that have been treated as orders. This chapter presents an overview of the phylogenetic diversity of Agaricomycetes, emphasizing recent molecular phylogenetic studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99:14887–14892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agerer R (1990) Studies on ectomycorrhizae XXIV. Ectomycorrhizae of Chroogomphus helveticus and C. rutilus (Gomphidiaceae, Basidiomycetes) and their relationship to those of Suillus and Rhizopogon. Nova Hedwigia 50:1–63

    Google Scholar 

  • Agerer R (1996a) Ramaria aurea (Schaeff.:Fr.) Quel. + Fagus sylvatica L. Descr Ectomycorrhizae 1:107–112

    Google Scholar 

  • Agerer R (1996b) Ramaria largentii Man & D.E. Stuntz + Picea abies (L.) Karst. Descr Ectomycorrhizae 1:113–118

    Google Scholar 

  • Agerer R (1996c) Ramaria spinulosa (Fr.) Quel. + Fagus sylvatica L. Descr Ectomycorrhizae 1:119–124

    Google Scholar 

  • Agerer R (1996d) Ramaria subbotrytis (Coker) Corner + Quercus robur L. Descr Ectomycorrhizae 1:125–130

    Google Scholar 

  • Agerer R (1999) Never change a functionally successful principle: the evolution of Boletales s. l. (Hymenomycetes, Basidiomycota) as seen from below-ground features. Sendtnera 6:5–91

    Google Scholar 

  • Agerer R, Beenken L (1998) Geastrum fimbriatum Fr. + Fagus sylvatica L. Descr Ectomycorrhizae 3:13–18

    Google Scholar 

  • Agerer R, Iosifidou P (2004) Rhizomorph structures of Hymenomycetes: a possibility to test DNA-based phylogenetic hypotheses? In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW, Eching, Germany, pp 249–302

    Google Scholar 

  • Agerer R, Beenken L, Christian J (1998) Gomphus clavatus (Pers.: Fr.) S. F. Gray + Picea abies (L.) Karst. Descr Ectomycorrhizae 3:25–29

    Google Scholar 

  • Aime MC, Vilgalys R, Miller OK Jr (2005) The Crepidotaceae (Basidiomycota, Agaricales): phylogeny and taxonomy of the genera and revision of the family based on molecular evidence. Am J Bot 92:74–82

    PubMed  Google Scholar 

  • Albee-Scott SR (2007) Does secotoid inertia drive the evolution of false-truffles? Mycol Res 111:1030–1039

    PubMed  Google Scholar 

  • Albee-Scott SR, Kropp BR (2010) A phylogenetic study of Trechispora thelephora. Mycotaxon 114:395–399

    Google Scholar 

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    CAS  Google Scholar 

  • Amalfi M, Decock C (2013) Fomitiporia castilloi sp. nov. and multiple clades around F. apiahyna and F. texana in Meso- and South America evidenced by multiloci phylogenetic inferences. Mycologia 105:873–887

    PubMed  Google Scholar 

  • Amalfi M, Yombiyeni P, Decock C (2010) Fomitiporia in sub-Saharan Africa: morphology and multigene phylogenetic analysis support three new species from the Guineo-Congolian rainforest. Mycologia 102:1303–1317

    PubMed  Google Scholar 

  • Amalfi M, Raymundo T, Valenzuela R, Decock C (2012) Fomitiporia cupressicola sp. nov., a parasite on Cupressus arizonica, and additional unnamed clades in the southern USA and northern Mexico, determined by multilocus phylogenetic analyses. Mycologia 104:880–893

    PubMed  Google Scholar 

  • Amend AS, Barshis DJ, Oliver TA (2012) Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6:1291–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andjic V, Cole ALC, Klena JD (2005) Taxonomic identity of the Sterile Red Fungus inferred using nuclear rDNA ITS 1 sequences. Mycol Res 109:200–204

    CAS  PubMed  Google Scholar 

  • Arpin N, Kühner R (1977) Les grandes lignes de la classification des Boletales. Bulletin de la Société linnéenne de Lyon 46:83–108, 181–208

    Google Scholar 

  • Bandoni RJ (1984) The Tremellales and Auriculariales: an alternative classification. Trans Mycol Soc Jpn 25:489–530

    Google Scholar 

  • Bandoni RJ, Wells K (1992) Clamp connections and classification of the Auriculariales and Tremellales. Trans Mycol Soc Jpn 33:13–19

    Google Scholar 

  • Baroni TJ, Matheny PB (2011) A re-evaluation of gasteroid and cyphelloid species of Entolomataceae from eastern North America. Harv Pap Bot 16:293–310

    Google Scholar 

  • Benjamin DR (1995) Mushrooms: poisons and panaceas. W. H. Freeman, New York, NY

    Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi – how close are we? Fung Biol Rev 24:1–16

    Google Scholar 

  • Bernicchia A (2005) Polyporaceae s.l. Fungi Europaei, vol 10. Candusso, Alassio

    Google Scholar 

  • Bernicchia A, Gorjón SP, Vampola P, Ryvarden L, Prodi A (2010) A phylogenetic analysis of Antrodia s.l. based on nrDNA ITS sequences, with emphasis on rhizomorphic European species. Mycol Prog 11:93–100

    Google Scholar 

  • Besl H, Bresinsky A (1977) Notizen über Vorkommen und systematische Bewertung von Pigmenten in Höheren Pilzen (2). Zeitschrift für Pilzkunde 43:311–322

    CAS  Google Scholar 

  • Besl H, Bresinsky A (1997) Chemosystematics of Suillaceae and Gomphidiaceae (suborder Suillineae). Plant Syst Evol 206:223–242

    Google Scholar 

  • Besl H, Bresinsky A, Kämmerer A (1986) Chemosystematik der Coniophoraceae. Zeitschrift für Mykologie 52:277–286

    Google Scholar 

  • Bidartondo MI, Bruns TD, Weiß M, Sérgio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc B Biol Sci 270:835–842

    Google Scholar 

  • Binder M, Bresinsky A (2002) Derivation of a polymorphic lineage of Gasteromycetes from boletoid ancestors. Mycologia 94:85–98

    PubMed  Google Scholar 

  • Binder M, Hibbett DS (2002) Higher-level phylogenetic relationships of Homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. Mol Phylogenet Evol 22:76–90

    CAS  PubMed  Google Scholar 

  • Binder M, Hibbett DS (2006) Molecular systematics and biological diversification of Boletales. Mycologia 98:971–981

    PubMed  Google Scholar 

  • Binder M, Hibbett DS, Larsson K-H, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst Biodiv 3:113–157

    Google Scholar 

  • Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycete pathogen of a subtidal rhodophyte. Am J Bot 93:547–556

    PubMed  Google Scholar 

  • Binder M, Larsson K-H, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102:865–880

    CAS  PubMed  Google Scholar 

  • Binder M, Justo A, Riley R, Salamov A, Lopez-Giraldez F, Sjokvist E, Copeland A, Foster B, Sun H, Larsson E, Larsson K-H, Townsend JP, Grigoriev I, Hibbett D (2013) Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105:1350–1373

    CAS  PubMed  Google Scholar 

  • Birkebak JM, Mayor JR, Ryberg KM, Matheny PB (2013) A systematic, morphological and ecological overview of the Clavariaceae (Agaricales). Mycologia 105:896–911

    PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    PubMed  Google Scholar 

  • Blair JE (2009) Fungi. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 215–219

    Google Scholar 

  • Bodensteiner P, Binder M, Moncalvo J-M, Agerer R, Hibbett D S (2004) Phylogenetic relationships of cyphelloid homobasidiomycetes. Mol Phylogenet Evol 33:501–515

    CAS  PubMed  Google Scholar 

  • Boidin J, Mugnier J, Canales R (1998) Taxonomie moleculaire des Aphyllophorales. Mycotaxon 66:445–491

    Google Scholar 

  • Both EE (1993) The Boletes of North America. A compendium. Buffalo Museum of Science, Buffalo, NY

    Google Scholar 

  • Bougher NL, Syme K (1998) Fungi of southern Australia. University of Western Australia Press, Perth

    Google Scholar 

  • Boyle H, Zimdars B, Renker C, Buscot F (2006) A molecular phylogeny of Hebeloma species from Europe. Mycol Res 110:369–380

    CAS  PubMed  Google Scholar 

  • Brazee NJ, Lindner DL (2013) Unravelling the Phellinus pini s.l. complex in North America: a multilocus phylogeny and differentiation analysis of Porodaedalea. Forest Pathol 43:132–143

    Google Scholar 

  • Bresinsky A (1974) Zur Frage der taxonomischen Relevanz chemischer Merkmale bei Höheren Pilzen. Bulletin de la Société linnéenne de Lyon, numéro spécial, pp 61–84

    Google Scholar 

  • Bresinsky A, Orendi P (1970) Chromatographische Analyse von Farbmerkmalen der Boletales und anderer Makromyzeten auf Dünnschichten. Zeitschrift für Pilzkunde 36:135–169

    CAS  Google Scholar 

  • Bresinsky A, Rennschmid A (1971) Pigmentmerkmale, Organisationsstufen und systematische Gruppen bei höheren Pilzen. Berichte der Deutschen Botanischen Gesellschaft 84:313–329

    Google Scholar 

  • Bresinsky A, Jarosch M, Fischer M, Schönberger I, Wittmann-Bresinsky B (1999) Phylogenetic relationships within Paxillus s. l. (Basidiomycetes, Boletales): separation of a southern hemisphere genus. Plant Biol 1:327–333

    CAS  Google Scholar 

  • Bruns TD (2012) The North American Mycoflora project – the first steps on a long journey. New Phytol 196:972–974

    PubMed  Google Scholar 

  • Bruns TD, Fogel R, White TJ, Palmer JD (1989) Accelerated evolution of a false-truffle from a mushroom anchestor. Nature 339:140–142

    CAS  PubMed  Google Scholar 

  • Bruns TD, Szaro TM, Gardes M, Cullings KW, Pan JJ, Horton TR, Kretzer A, Garbelotto M, Li Y (1998) A sequence database for identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Mol Ecol 7:257–272

    CAS  Google Scholar 

  • Burdsall HH Jr (1979) Laetisaria (Aphyllophorales, Corticiaceae), a new genus for the teleomorph of Isaria fuciformis. Trans Br Mycol Soc 72:419–422

    Google Scholar 

  • Burdsall HH Jr, Hoch HC, Boosalis MG, Setliff EC (1980) Laetisaria arvalis (Aphyllophorales, Corticiaceae): a possible biological control agent for Rhizoctonia solani and Pythium species. Mycologia 72:728–736

    Google Scholar 

  • Burdsall HH, Volk TJ, Ammirati JF (1996) Bridgeoporus, a new genus to accommodate Oxyporus nobilissimus (Basidiomycotina, Polyporaceae). Mycotaxon 60:387–395

    Google Scholar 

  • Buyck B, Hofstetter V, Eberhardt U, Verbeken A, Kauff F (2008) Walking the thin line between Russula and Lactarius: the dilemma of Russula sect. Ochricompactae. Fungal Divers 28:15–40

    Google Scholar 

  • Buyck B, Duhem B, Eyssartier G, Ducousso M (2012) Podoserpula miranda sp. nov. (Amylocorticiales, Basidiomycota) from New Caledonia. Cryptogamie Mycologie 33:453–461

    Google Scholar 

  • Buyck B, Kauff F, Cruaud C, Hofstetter V (2013a) Molecular evidence for novel Cantharellus (Cantharellales, Basidiomycota) from tropical African miombo woodland and a key to all tropical African chanterelles. Fungal Divers 57:281–298

    Google Scholar 

  • Buyck B, Kauff F, Eyssartier G, Couloux A, Hofstetter V (2013b) A multilocus phylogeny for worldwide Cantharellus (Cantharellales, Agaricomycetidae). Fungal Divers 64:101–121. doi:10.1007/s13225-013-0272-3

    Google Scholar 

  • Cabral TS, Marinho P, Goto BT, Baseia IG (2012) Abrachium, a new genus in the Clathraceae, and Itajahya reassessed. Mycotaxon 119:419–429

    Google Scholar 

  • Castellano MA (1988) The taxonomy of the genus Hysterangium (Basidiomycotina, Hysterangiaceae) with notes on its ecology. PhD Dissertation, Oregon State University, Corvallis, OR. 227 p

    Google Scholar 

  • Castellano MA, Beever RE (1994) Truffle-like Basidiomycotina of New Zealand: Gallacea, Hysterangium, Phallobata, and Protubera. NZ J Bot 32:305–328

    Google Scholar 

  • Castellano MA, Verbeken A, Walleyn R, Thoen D (2000) Some new or interesting sequestrate Basidiomycota from African woodlands. Karstenia 40:11–21

    Google Scholar 

  • Chamuris GP (1988) The non-stipitate stereoid fungi in the northeastern United States and adjacent Canada. Mycologia Memoir No. 14. J. Cramer, Berlin

    Google Scholar 

  • Chang ST, Wasser SP (2012) The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms 14:95–134

    PubMed  Google Scholar 

  • Claridge AW (2002) Ecological role of hypogeous ectomycorrhizal fungi in Australian forests and woodlands. Plant Soil 244:291–305

    CAS  Google Scholar 

  • Clémençon H (2004) Cytology and plectology of the Hymenomycetes. Bibl Mycol 199:1–488

    Google Scholar 

  • Co-David D, Langeveld D, Noordeloos ME (2009) Molecular phylogeny and spore evolution of Entolomataceae. Persoonia 23:147–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colgan W, Castellano MA, Bougher NL (1995) NATS truffle and truffle-like fungi 2: Kjeldsenia aureispora gen. et sp. nov., a truffle-like fungus in the Cortinariaceae. Mycotaxon 55:175–178

    Google Scholar 

  • Colgan W, Castellano MA, Spatafora JW (1997) Systematics of the Hysterangiaceae (abstract). Inoculum 48:7

    Google Scholar 

  • Collins T, Kearney M, Maddison D (2013) The ideas lab concept, assembling the tree of life, and AVAToL. PLoS Curr Tree Life 1. doi:10.1371/currents.tol.0fdb85e1619f313a2a5a2ec3d7a8df9e

  • Corner EJH (1972) Boletus in Malaysia. Government Printing Office, Singapore

    Google Scholar 

  • Cruz D, Suárez JP, Kottke I, Piepenbring M, Oberwinkler F (2011) Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8S sequence data of basidiomata from a tropical Andean forest. Mycol Prog 10:229–238

    Google Scholar 

  • Cui B-K, Decock C (2012) Phellinus castanopsidis sp. nov. (Hymenochaetaceae) from southern China, with preliminary phylogeny based on rDNA sequences. Mycol Prog 12:341–351

    Google Scholar 

  • Cui B-K, Zhao C-L, Dai Y-C (2011) Melanoderma microcarpum gen. et sp. nov. (Basidiomycota) from China. Mycotaxon 116:295–302

    Google Scholar 

  • Cunningham GH (1931) The Gasteromycetes of Australasia. XI. Linn Soc New South Wales 56:182–200

    Google Scholar 

  • Dai Y-C (2010) Hymenochaetaceae (Basidiomycota) in China. Fungal Divers 45:131–343

    Google Scholar 

  • Dai Y-C, Cui B-K (2011) Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal Biol 115:813–814

    PubMed  Google Scholar 

  • Dai YC, Wang Z, Binder M, Hibbett DS (2006) Phylogeny and a new species of Sparassis (Polyporales, Basidiomycota): evidence from mitochondrial atp6, nuclear rDNA and rpb2 genes. Mycologia 98:584–592

    CAS  PubMed  Google Scholar 

  • Dai Y-C, Zhou L-W, Cui B-K, Chen Y-Q, Decock C (2010) Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol 87:1587–1593

    CAS  PubMed  Google Scholar 

  • Dal-Forno M, Lawrey JD, Sikaroodi M, Bhattarai S, Gillevet PM, Sulzbacher M, Lücking R (2013) Starting from scratch: evolution of the lichen thallus in the basidiolichen Dictyonema (Agaricales: Hygrophoraceae). Fungal Biol 117:584–598

    CAS  PubMed  Google Scholar 

  • De Koker TH, Nakasone KK, Haarhof J, Burdsall HH, Janse BJH (2003) Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. Mycol Res 107:1032–1040

    PubMed  Google Scholar 

  • Decock C, Ryvarden L (2003) Perenniporiella gen. nov. segregated from Perenniporia, including a key to neotropical Perenniporia species with pileate basidiomes. Mycol Res 107:93–103

    PubMed  Google Scholar 

  • Decock C, Bitew A, Castillo G (2005) Fomitiporia tenuis and Fomitiporia aethiopica (Basidiomycetes, Hymenochaetales), two undescribed species from the Ethiopian highlands: taxonomy and phylogeny. Mycologia 97:121–129

    PubMed  Google Scholar 

  • Decock C, Figueroa SH, Robledo G, Castillo G (2006) Phellinus caribaeo-quercicolus sp. nov., parasitic on Quercus cubana: taxonomy and preliminary phylogenetic relationships. Mycologia 98:265–274

    PubMed  Google Scholar 

  • Decock C, Figueroa SH, Robledo G, Castillo G (2007) Fomitiporia punctata (Basidiomycota, Hymenochaetales) and its presumed taxonomic synonyms in America: taxonomy and phylogeny of some species from tropical/subtropical areas. Mycologia 99:733–752

    CAS  PubMed  Google Scholar 

  • Dennis RL (1970) A middle-Pennsylvanian basidiomycete mycelium with clamp connections. Mycologia 62:578–584

    Google Scholar 

  • Dennis RL (1976) Palaeosclerotium, a Pennsylvanian age fungus combining features of modern ascomycetes and basidiomycetes. Science 192:66–68

    CAS  PubMed  Google Scholar 

  • Dentinger BTM, McLaughlin DJ (2006) Reconstructing the Clavariaceae using nuclear large subunit rDNA sequences and a new genus segregated from Clavaria. Mycologia 98:746–762

    CAS  PubMed  Google Scholar 

  • Dentinger BT, Ammirati JF, Both EE, Desjardin DE, Halling RE, Henkel TW, Moreau PA, Nagasawa E, Soytong K, Taylor AF, Watling R, Moncalvo JM, McLaughlin DJ (2010) Molecular phylogenetics of porcini mushrooms (Boletus section Boletus). Mol Phylogenet Evol 57:1276–1292

    CAS  PubMed  Google Scholar 

  • DePriest PT, Sikaroodi M, Lawrey JD, Diederich P (2005) Marchandiomyces lignicola sp. nov. shows recent and repeated transition between a lignicolous and a lichenicolous habit. Mycol Res 109:57–70

    CAS  PubMed  Google Scholar 

  • Desjardin DE, Perry BA (2009) A new species of Phallus from São Tomé, Africa. Mycologia 101:545–547

    PubMed  Google Scholar 

  • Desjardin DE, Wilson AW, Binder M (2008) Durianella, a new gasteroid genus of boletes from Malaysia. Mycologia 100:956–961

    PubMed  Google Scholar 

  • Desjardin DE, Binder M, Roekring S, Flegel T (2009) Spongiforma, a new genus of gastroid boletes from Thailand. Fungal Divers 37:1–8

    Google Scholar 

  • Diederich P (1990) New or interesting lichenicolous fungi. 1. Species from Luxembourg. Mycotaxon 37:297–330

    Google Scholar 

  • Diederich P, Lawrey JD (2007) New lichenicolous, muscicolous, corticolous and lignicolous taxa of Burgoa s. l. and Marchandiomyces s. l. (anamorphic Basidiomycota), a new genus for Omphalina foliacea, and a catalogue and a key to the non-lichenized, bulbilliferous basidiomycetes. Mycol Prog 6:61–80

    Google Scholar 

  • Diederich P, Schultheis B, Blackwell M (2003) Marchandiobasidium aurantiacum gen. sp. nov., the teleomorph of Marchandiomyces aurantiacus (Basidiomycota, Ceratobasidiales). Mycol Res 107:523–527

    PubMed  Google Scholar 

  • Diederich P, Lawrey JD, Sikaroodi M, Gillevet PM (2011) A new lichenicolous teleomorph is related to plant pathogens in Laetisaria and Limonomyces (Basidiomycota, Corticiales). Mycologia 103:525–533

    PubMed  Google Scholar 

  • Domínguez de Toledo LS, Castellano MA (1997) First report of Gastrosporium simplex (Gasteromycetes) from South America. Mycotaxon 64:443–448

    Google Scholar 

  • Donk MA (1961) Four new families of Hymenomycetes. Persoonia 1:405–407

    Google Scholar 

  • Donk MA (1964) A conspectus of the families of Aphyllophorales. Persoonia 3:199–324

    Google Scholar 

  • Donk MA (1971) Progress in the study of the classification of the higher Basidiomycetes. In: Petersen RH (ed) Evolution in the higher Basidiomycetes. The University of Tennessee Press, Knoxville, TN, pp 3–25

    Google Scholar 

  • Douhan GW, Rizzo DM (2003) Host-parasite relationships among bolete infecting Hypomyces species. Mycol Res 107:1342–1349

    CAS  PubMed  Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drew BT, Gazis R, Cabezas P, Swithers KS, Deng J, Rodriguez R, Katz LA, Crandall KA, Hibbett DS, Soltis DE (2013) Lost branches on the tree of life. PLoS Biol 11:e1001636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunham SM, Larsson KH, Spatafora JW (2007) Species richness and community composition of mat-forming ectomycorrhizal fungi in old- and second-growth Douglas-fir forests of the HJ Andrews Experimental Forest, Oregon, USA. Mycorrhiza 17:633–645. doi:10.1007/s00572-007-0141-6

    PubMed  Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765

    CAS  PubMed  Google Scholar 

  • Eriksson J (1954) Ramaricium n. gen., a corticoid member of the Ramaria group. Svensk Bot Tidskr 48:188–198

    Google Scholar 

  • Eriksson J, Ryvarden L (1973) The Corticiaceae of North Europe: Aleurodiscus to Confertobasidium, vol 2. Fungiflora, Oslo

    Google Scholar 

  • Eriksson J, Ryvarden L (1976) The Corticiaceae of North Europe: Hyphodermella to Mycoacia, vol 4. Fungiflora, Oslo

    Google Scholar 

  • Erland S, Taylor AFS (1999) Resupinate ectomycorrhizal fungal genera. In: Cairney JM (ed) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin, pp 347–363

    Google Scholar 

  • Ertz D, Lawrey JD, Sikaroodi M, Gillevet PM, Fischer E, Killmann D, Serusiaux E (2008) A new lineage of lichenized basidiomycetes inferred from a two-gene phylogeny: the Lepidostromataceae with three species from the tropics. Am J Bot 95:1548–1556

    CAS  PubMed  Google Scholar 

  • Etayo J, Diederich P (1996) Lichenicolous fungi from the western Pyrenees, France and Spain. II. More deuteromycetes. Mycotaxon 60:415–428

    Google Scholar 

  • Farid AM, Lee SS, Maziah Z, Patahayah M (2009) Pathogenicity of Rigidoporus microporus and Phellinus noxius against four major plantation tree species in Peninsular Malaysia. J Trop Forest Sci 21:289–298

    Google Scholar 

  • Fischer E (1900) Phallineae, Hymenogastrineae, Lycoperdineae, Nidulariineae, Plectobasidiineae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, Teil I, Abt. 1, W Engelmann, Leipzig, pp 276–346

    Google Scholar 

  • Fischer M (2002) A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycol Prog 1:315–324

    Google Scholar 

  • Fischer M, Binder M (2004) Species recognition, geographic distribution and host-pathogen relationships: a case study in a group of lignicolous basidiomycetes, Phellinus s.l. Mycologia 96:799–811

    PubMed  Google Scholar 

  • Fischer M, Edwards J, Cunnington JH, Pascoe IG (2005) Basidiomycetous pathogens on grapevine: a new species from Australia – Fomitiporia australiensis. Mycotaxon 92:85–96

    Google Scholar 

  • Fischer E, Ertz D, Killmann D, Sérusiaux E (2007) Two new species of Multiclavula (lichenized basidiomycetes) from savanna soils in Rwanda (East Africa). Bot J Linn Soc 155:457–465

    Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Gorecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kues U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    CAS  PubMed  Google Scholar 

  • Frank JL, Coffan RA, Southworth D (2010) Aquatic gilled mushrooms: Psathyrella fruiting in the Rogue River in southern Oregon. Mycologia 102:93–107

    CAS  PubMed  Google Scholar 

  • Fröhlich-Nowoisky J, Pickersgill DA, Despres VR, Poschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA 106:12814–12819

    PubMed  PubMed Central  Google Scholar 

  • Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, Andreae MO, Després VR, Pöschl U (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136

    Google Scholar 

  • Frøslev TG, Matheny PB, Hibbett DS (2005) Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): a comparison of RPB1, RPB2, and ITS phylogenies. Mol Phylogenet Evol 37:602–618

    PubMed  Google Scholar 

  • Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    PubMed  Google Scholar 

  • Garcia-Sandoval R, Wang Z, Binder M, Hibbett DS (2011) Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. Mycologia 103:510–524

    PubMed  Google Scholar 

  • Garnica S, Weiß M, Oertel B, Oberwinkler F (2005) A framework for a phylogenetic classification in the genus Cortinarius (Basidiomycota, Agaricales) derived from morphological and molecular data. Can J Bot 83:1457–1477

    CAS  Google Scholar 

  • Gäumann E (1926) Vergleichende Morphologie der Pilze. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Geml J, Davis DD, Geiser DM (2005) Phylogenetic analyses reveal deeply divergent species lineages in the genus Sphaerobolus (Phallales: Basidiomycota). Mol Phylogenet Evol 35:313–322

    CAS  PubMed  Google Scholar 

  • Geml J, Laursen GA, O’Neill K, Nusbaum HC, Taylor DL (2006) Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria). Mol Ecol 15:225–239

    CAS  PubMed  Google Scholar 

  • Ghobad-Nejhad M, Dai YC (2010) Diplomitoporus rimosus is found in Asia and belongs to the Hymenochaetales. Mycologia 102:1510–1517

    PubMed  Google Scholar 

  • Ghobad-Nejhad M, Nilsson RH, Hallenberg N (2010) Phylogeny and taxonomy of the genus Vuilleminia (Basidiomycota) based on molecular and morphological evidence, with new insights into the Corticiales. Taxon 59:1519–1534

    Google Scholar 

  • Giachini AJ, Hosaka K, Nouhra ER, Spatafora JW, Trappe JM (2010) Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA and mit-atp6-DNA combined sequences. Fungal Biol 114:224–234

    CAS  PubMed  Google Scholar 

  • Gilbert JE (1931) Les Bolets. Les livres du mycologue, vol 3. E Le Francois, Paris, pp 1–254

    Google Scholar 

  • Gilbertson RL, Ryvarden L (1986) North American polypores, vol 1. Fungiflora, Oslo

    Google Scholar 

  • Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod 51:1–317

    CAS  Google Scholar 

  • Ginns J, Lefebvre MNL (1993) Lignicolous corticioid fungi (Basidiomycota) of North America: systematics, distribution, and ecology. Mycologia Memoir No. 19. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Glen M, Tommerup IC, Bougher NL, O’Brien PA (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247

    CAS  PubMed  Google Scholar 

  • Gorjón SP, Greslebin AG, Rajchenberg MP (2011) Notes on Amylocorticiellum (Amylocorticiales, Basidiomycota), with some new combinations. Mycotaxon 116:283–293

    Google Scholar 

  • Grand EA, Hughes KW, Petersen RH (2010) Relationships within Lentinus subg. Lentinus (Polyporales, Agaricomycetes), with emphasis on sects. Lentinus and Tigrini. Mycol Prog 10:399–413

    Google Scholar 

  • Greslebin A (2004) Rhizochaete, a new genus of phanerochaetoid fungi. Mycologia 96:260–271

    PubMed  Google Scholar 

  • Griffiths RP, Castellano MA, Caldwell BA (1991) Hyphal mats formed by two ectomycorrhizal fungi and their association with Douglas-fir seedlings: a case study. Plant Soil 134:255–259

    Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337

    CAS  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucl Acids Res 40(Database issue):D26–D32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

    PubMed  Google Scholar 

  • Gulden G, Stensrud O, Shalchian-Tabrizi K, Kauserud H (2005) Galerina Earle: a polyphyletic genus in the consortium of dark-spored agarics. Mycologia 97:823–837

    CAS  PubMed  Google Scholar 

  • Guzmán-Dávalos L, Mueller GM, Cifuentes J, Miller AN, Santerre A (2003) Traditional infrageneric classification of Gymnopilus is not supported by ribosomal DNA sequence data. Mycologia 95:1204–1214

    PubMed  Google Scholar 

  • Hallenberg N, Nilsson RH, Antonelli A, Wu SH, Maekawa N, Norden B (2007) The Peniophorella praetermissa species complex (Basidiomycota). Mycol Res 111:1366–1376

    CAS  PubMed  Google Scholar 

  • Hallenberg N, Ryberg M, Nilsson RH, Wood AR, Wu S-H (2008) Pseudolagarobasidium (Basidiomycota): on the reinstatement of a genus of parasitic, saprophytic, and endophytic resupinate fungi. Botany 86:1319–1325

    Google Scholar 

  • Hallenberg N, Nilsson RH, Robledo G (2013) Species complexes in Hericium (Russulales, Agaricomycota) and a new species – Hericium rajchenbergii – from southern South America. Mycol Prog 12:413–420

    Google Scholar 

  • Halling RE, Baroni TJ, Binder M (2007) A new genus of Boletaceae from eastern North America. Mycologia 99:310–316

    CAS  PubMed  Google Scholar 

  • Halling RE, Nuhn M, Fechner NA, Osmundson TW, Soytong K, Arora D, Hibbett DS, Binder M (2012a) Sutorius: a new genus for Boletus eximius. Mycologia 104:951–961. doi:10.3852/11-376

    PubMed  Google Scholar 

  • Halling RE, Nuhn M, Osmundson TW, Fechner NA, Trappe JM, Soytong K, Arora D, Hibbett DS, Binder M (2012b) Affinities of the Boletus chromapes group to Royoungia and the description of two new genera, Harrya and Australopilus. Aust Syst Bot 25:418–431

    Google Scholar 

  • Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FH, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 257–291

    Google Scholar 

  • Harrower E, Ammirati J, Cappuccino A, Ceska O, Kranabetter J, Kroeger P, Lim S, Taylor T, Berbee M (2011) Cortinarius species diversity in British Columbia and molecular phylogenetic comparison with European specimen sequences. Botany 89:799–810

    Google Scholar 

  • Hausknecht A (2009) Conocybe-Pholiotina. Fungi Europaei, vol 11. Candusso, Alassio

    Google Scholar 

  • He S-H, Dai Y-C (2012) Taxonomy and phylogeny of Hymenochaete and allied genera of Hymenochaetaceae (Basidiomycota) in China. Fungal Divers 56:77–93

    Google Scholar 

  • He S-H, Li H-J (2013) Pseudochaete latesetosa and P. subrigidula spp. nov. (Hymenochaetales, Basidiomycota) from China based on morphological and molecular characters. Mycol Prog 12:331–339

    Google Scholar 

  • Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2

    PubMed  PubMed Central  Google Scholar 

  • Heim R, Wasson RG (1958) Les champignons hallucinogenes du Mexique. Museum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Henkel TW, Aime MC, Uehling JK, Smith ME (2011) New species and distribution records of Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield. Mycologia 203:883–894

    Google Scholar 

  • Henkel TW, Aime MC, Chin MML, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiv Conserv 21:2195–2220

    Google Scholar 

  • Hibbett DS (2001) Shiitake mushrooms and molecular clock: historical biogeography of Lentinula. J Biogeogr 28:231–241

    Google Scholar 

  • Hibbett DS (2004) Trends in morphological evolution in homobasidiomycetes inferred using maximum likelihood: a comparison of binary and multistate approaches. Syst Biol 53:889–903

    PubMed  Google Scholar 

  • Hibbett DS (2006) A phylogenetic overview of the Agaricomycotina. Mycologia 98:917–925

    PubMed  Google Scholar 

  • Hibbett DS (2007) After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycol Res 111:1001–1018

    PubMed  Google Scholar 

  • Hibbett DS, Binder M (2001) Evolution of marine mushrooms. Biol Bull 201:319–322

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M (2002) Evolution of complex fruiting-body morphologies in homobasidiomycetes. Proc R Soc B Biol Sci 269:1963–1969

    CAS  Google Scholar 

  • Hibbett DS, Donoghue JD (1995) Progress towards a phylogenetic classification of the Polyporaceace through parsimony analysis of mitochondrial ribosomal DNA sequences. Can J Bot 73:S853–S861

    CAS  Google Scholar 

  • Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7:13

    PubMed  PubMed Central  Google Scholar 

  • Hibbett DS, Thorn RG (2001) Basidiomycota: homobasidiomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol 7A, Systematics and evolution. Springer, Berlin, pp 121–168

    Google Scholar 

  • Hibbett DS, Tsuneda A, Murakami S (1994) The secotioid form of Lentinus tigrinus: genetics and development of a fungal morphological innovation. Am J Bot 81:466–478

    Google Scholar 

  • Hibbett DS, Grimaldi D, Donoghue MJ (1995) Cretaceous mushrooms in amber. Nature 377:487

    CAS  Google Scholar 

  • Hibbett DS, Grimaldi D, Donoghue MJ (1997a) Fossil mushrooms from Cretaceous and Miocene ambers and the evolution of homobasidiomycetes. Am J Bot 84:981–991

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Pine EM, Langer E, Langer G, Donoghue JD (1997b) Evolution of gilled mushrooms and puffballs inferred from riboomal DNA sequences. Proc Natl Acad Sci USA 94:12002–12006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibbett DS, Gilbert L-B, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Wang Z (2003) Another fossil agaric from Dominican amber. Mycologia 95:685–687

    PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiß M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fung Biol Rev 25:38–47

    Google Scholar 

  • Hibbett DS, Stajich JE, Spatafora JW (2013) Toward genome-enabled mycology. Mycologia 105:1339–1349

    PubMed  Google Scholar 

  • Hjortstam K, Ryvarden L (2007) Studies in corticioid fungi from Venezuela III (Basidiomycotina, Aphyllophorales). Synopsis Fungorum 23:56–107

    Google Scholar 

  • Hjortstam K, Ryvarden L (2009) A checklist of names in Hyphodontia sensu stricto – sensu lato and Schizopora with new combinations in Lagarobasidium, Lyomyces, Kneiffiella, Schizopora, and Xylodon. Synopsis Fungorum 26:33–55

    Google Scholar 

  • Hodkinson BP, Uehling JK, Smith ME (2012) Lepidostroma vilgalysii, a new basidiolichen from the New World. Mycol Prog 11:827–833

    Google Scholar 

  • Hodkinson BP, Moncada B, Lücking R (2013) Lepidostromatales, a new order of lichenized fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and Sulzbacheromyces, and one new species, Lepidostroma winklerianum. Fungal Divers 64:165–179. doi:10.1007/s13225-013-0267-0

    Google Scholar 

  • Hofstetter V, Clémençon H, Vilgalys R, Moncalvo JM (2002) Phylogenetic analyses of the Lyophylleae (Agaricales, Basidiomycetes) based on nuclear and mitochondrial rDNA sequences. Mycol Res 106:1043–1059

    CAS  Google Scholar 

  • Horak E (2004) Röhrlinge und Blätterpilze in Europa. Elsevier, Spektrum, Munich

    Google Scholar 

  • Horak E (2011) Revision of Malaysian species of Boletales s. l. (Basidiomycota) described by E. J. H. Corner (1972, 1974). Malayan Forest Rec 51:1–283

    Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    CAS  PubMed  Google Scholar 

  • Hosaka K, Castellano MA (2008) Molecular phylogenetics of Geastrales with special emphasis on the position of Sclerogaster. Bull Nat Mus Nat Sci B 34:161–173

    Google Scholar 

  • Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W, Dominguez LS, Nouhra ER, Geml J, Giachini AJ, Kenney SR, Simpson NB, Spatafora JW, Trappe JM (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98:949–959

    CAS  PubMed  Google Scholar 

  • Hosaka K, Castellano MA, Spatafora JW (2008) Biogeography of Hysterangiales (Phallomycetidae, Basidiomycota). Mycol Res 112:448–462

    CAS  PubMed  Google Scholar 

  • Hosen MI, Feng B, Wu G, Zhu XT, Li YC, Yang ZL (2013) Borofutus, a new genus of Boletaceae from tropical Asia: phylogeny, morphology and taxonomy. Fungal Divers 58:215–226

    Google Scholar 

  • Humpert AJ, Muench EL, Giachini AJ, Castellano MA, Spatafora JW (2001) Molecular phylogenetics of Ramaria (Gomphales) and related genera: evidence from nuclear large subunit and mitochondrial small subunit rDNA sequences. Mycologia 93:465–477

    CAS  Google Scholar 

  • Hyde KD, Udayanga D, Manamgoda DS, Tedersoo L, Larsson E, Abarenkov K, Bertrand YJK, Oxelman B, Hartman M, Kauserud H, Ryberg M, Kristiansson E, Nilsson RH (2013) Incorporating molecular data in fungal systematics: a guide for aspiring researchers. Curr Res Environ Appl Mycol 3:1–32

    Google Scholar 

  • Hynson NA, Weiß M, Preiss K, Gebauer G, Treseder KK (2013) Fungal host specificity is not a bottleneck for the germination of Pyroleae species (Ericaceae) in a Bavarian forest. Mol Ecol 22:1473–1481

    PubMed  Google Scholar 

  • Ingold CT (1972) Sphaerobolus: the story of a fungus. Trans Br Mycol Soc 58:179–195

    Google Scholar 

  • Ingold CT (1982a) Basidiospore germination and conidium development in Auricularia. Trans Br Mycol Soc 78:161–166

    Google Scholar 

  • Ingold CT (1982b) Basidiospore germination and conidium formation in Exidia glandulosa and Tremella mesenterica. Trans Br Mycol Soc 79:370–373

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Jarosch M (2001) Zur molekularen Systematik der Boletales: Coniophorineae, Paxillineae und Suillineae. Bibl Mycol 191:1–158

    Google Scholar 

  • Jarosch M, Besl H (2001) Leucogyrophana, a polyphyletic genus of the order Boletales (Basidiomycetes). Plant Biol 3:443–448

    Google Scholar 

  • Jeong WJ, Lim YW, Lee JS, Jung HS (2005) Phylogeny of Phellinus and related genera inferred from combined data of ITS and mitochondrial SSU rDNA sequences. J Microbiol Biotechnol 15:1028–1038

    CAS  Google Scholar 

  • Jia B-S, Zhou L-W, Cui B-K, Rivoire B, Dai Y-C (2013) Taxonomy and phylogeny of Ceriporia (Polyporales, Basidiomycota) with an emphasis of Chinese collections. Mycol Prog 13:81–93. doi:10.1007/s11557-013-0895-5

    Google Scholar 

  • Jones EBG, Fell JW (2012) Basidiomycota. In: Jones EBG, Pang K-L (eds) Marine fungi. De Gruyter, Berlin, pp 48–61

    Google Scholar 

  • Jørgensen PM (1989) Omphalina foliacea, a new basidiolichen from America. Nord J Bot 9:89–95

    Google Scholar 

  • Ju HK, Chung HW, Hong S-S, Park JH, Lee J, Kwon SW (2010) Effect of steam treatment on soluble phenolic content and antioxidant activity of the Chaga mushroom (Inonotus obliquus). Food Chem 119:619–625

    CAS  Google Scholar 

  • Jülich W (1981) Higher taxa of basidiomycetes. J. Cramer, Vaduz

    Google Scholar 

  • Justo A, Hibbett D (2011) Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. Taxon 60:1567–1583

    Google Scholar 

  • Justo A, Morgenstern I, Hallen-Adams HE, Hibbett DS (2009) Convergent evolution of sequestrate forms in Amanita under Mediterranean climate conditions. Mycologia 102:675–688

    Google Scholar 

  • Justo A, Vizzini A, Minnis AM, Menolli N Jr, Capelari M, Rodríguez O, Malysheva E, Contu M, Ghignone S, Hibbett DS (2011) Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution. Fungal Biol 115:1–20

    PubMed  Google Scholar 

  • Kämmerer A, Besl H, Bresinsky A (1985) Omphalotaceae fam. nov. und Paxillaceae, ein chemotaxonomischer Vergleich zweier Pilzfamilien der Boletales. Plant Syst Evol 150:101–117

    Google Scholar 

  • Kasuya T, Hosaka K, Sakamoto H, Uchida A, Hoshino T, Kakishima M (2011) New records of Geastrum from Japanese sand dunes. Mycotaxon 118:1–15

    Google Scholar 

  • Kasuya T, Hosaka K, Uno K, Kakishima M (2012) Phylogenetic placement of Geastrum melanocephalum and polyphyly of Geastrum triplex. Mycoscience 53:411–426

    Google Scholar 

  • Kauserud H, Shalchian-Tabrizi K, Decock C (2007a) Multi-locus sequencing reveals multiple geographically structured lineages of Coniophora arida and C. olivacea (Boletales) in North America. Mycologia 99:705–713

    CAS  PubMed  Google Scholar 

  • Kauserud H, Svegården IB, Sætre G-P, Knudsen H, Stensrud Ø, Schmidt O, Doi S, Sugiyama T, Högberg N (2007b) Asian origin and rapid global spread of the destructive dry rot fungus Serpula lacrymans. Mol Ecol 16:3350–3360

    Google Scholar 

  • Keller N, Hohn T (1997) Metabolic pathway gene clusters in filamentous fungi. Fung Genet Biol 21:17–29

    CAS  Google Scholar 

  • Kerekes J, Desjardin DE (2009) A monograph of the genera Crinipellis and Moniliophthora from Southeast Asia including a molecular phylogeny of the nrITS region. Fungal Divers 37:101–152

    Google Scholar 

  • Kim SY, Jung HS (2000) Phylogenetic relationships of the Aphyllophorales inferred from sequence analysis of nuclear small subunit ribosomal DNA. J Microbiol 38:122–131

    CAS  Google Scholar 

  • Kim SY, Jung HS (2001) Phylogenetic relationships of the Polyporaceae based on gene sequences of nuclear small subunit ribosomal RNAs. Mycobiology 29:73–79

    CAS  Google Scholar 

  • Kim KM, Lee JS, Jung HS (2007) Fomitopsis incarnatus sp. nov. based on generic evaluation of Fomitopsis and Rhodofomes. Mycologia 99:833–841

    CAS  PubMed  Google Scholar 

  • Kirchmair M, Morandell S, Stolz D, Pöder R, Sturmbauer C (2004) Phylogeny of the genus Omphalotus based on nuclear ribosomal DNA-sequences. Mycologia 96:1253–1260

    CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon P, Stalpers J (eds) (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Kirschner R (2010) The synnematous anamorph of Exidia saccharina (Auriculariales, Basidiomycota): morphology, conidiogenesis and association with bark beetles. Polish Bot J 55:335–342

    Google Scholar 

  • Kirschner R, Chen C-J (2004) Helicomyxa everhartioides, a new helicosporous sporodochial hyphomycete from Taiwan with relationships to the Hyaloriaceae (Auriculariales, Basidiomycota). Stud Mycol 50:337–342

    Google Scholar 

  • Kirschner R, Oberwinkler F (2009) Supplementary notes on Basidiopycnis hyalina (Basidiomycota, Atractiellales) and its anamorph. Mycotaxon 109:29–38

    Google Scholar 

  • Kirschner R, Yang ZL, Zhao Q, Feng B (2010) Ovipoculum album, a new anamorph with gelatinous cupulate bulbilliferous conidiomata from China and with affinities to the Auriculariales (Basidiomycota). Fungal Divers 43:55–65

    Google Scholar 

  • Kirschner R, Lee I-S, Piepenbring M (2012) A new pycnidial fungus with clamped hyphae from Central America. Mycol Prog 11:561–568

    Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    PubMed  Google Scholar 

  • Kotiranta H, Saarenoksa R (2005) The genus Athelopsis (Aphyllophorales, Corticiaceae) in Finland. Annales Botanici Fennici 42:335–342

    Google Scholar 

  • Kotiranta H, Larsson K-H, Saarenoksa R, Kulju M (2011) Tretomyces gen. novum, Byssocorticium caeruleum sp. nov., and new combinations in Dendrothele and Pseudomerulius (Basidiomycota). Annales Botanici Fennici 48:37–48

    Google Scholar 

  • Kottke I, Beiter A, Weiß M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    PubMed  Google Scholar 

  • Kreisel H (1969) Grundzüge eines natürlichen Systems der Pilze. J. Cramer, Jena, Germany

    Google Scholar 

  • Kretzer AM, Bruns TD (1999) Use of atp6 in fungal phylogenetics: an example from the Boletales. Mol Phylogenet Evol 13:483–492

    CAS  PubMed  Google Scholar 

  • Krings M, Dotzler N, Galtier J, Taylor TN (2011) Oldest fossil basidiomycete clamp connections. Mycoscience 52:18–23

    Google Scholar 

  • Krüger D (2008) Notes on the molecular phylogeny of the ‘Polyporellus’ group within Polyporus: identity of collections from Canada and Ecuador, and relationships with Lentinus. Sydowia 60:213–233

    Google Scholar 

  • Krüger D (2010) Unusual polypore fungi – a taxonomic emendation of Polyporus (Basidiomycotina) after ribosomal spacer characters. Cryptogamie Mycologie 31:389–401

    Google Scholar 

  • Krüger D, Gargas A (2004) The basidiomycete genus Polyporus – an emendation based on phylogeny and putative secondary structure of ribosomal RNA molecules. Feddes Repertorium 115:530–546

    Google Scholar 

  • Kühner R (1984) Some mainlines of classification in the gill fungi. Mycologia 76:1059–1074

    Google Scholar 

  • Langer E (2002) Phylogeny of non-gilled and gilled basidiomycetes: DNA sequence inference, ultrastructure and comparative morphology. Universität Tübingen, Tübingen

    Google Scholar 

  • Largent DL, Abell-Davis SE, Cummings GA, Ryan KL, Bergemann SE (2011) Saxicolous species of Claudopus (Agaricales, Entolomataceae) from Australia. Mycotaxon 116:253–264

    Google Scholar 

  • Larsson K-H (1994) Poroid species in Trechispora and the use of calcium oxalate crystals for species identification. Mycol Res 98:1153–1172

    Google Scholar 

  • Larsson K-H (2004) High phylogenetic diversity among corticioid homobasidiomycetes. Mycol Res 108:983–1002

    CAS  PubMed  Google Scholar 

  • Larsson K-H (2007a) Molecular phylogeny of Hyphoderma and the reinstatement of Peniophorella. Mycol Res 111:186–195

    PubMed  Google Scholar 

  • Larsson K-H (2007b) Re-thinking the classification of corticioid fungi. Mycol Res 111:1040–1063

    PubMed  Google Scholar 

  • Larsson E, Jeppson M (2008) Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycol Res 112:4–22

    CAS  PubMed  Google Scholar 

  • Larsson E, Larsson K-H (2003) Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia 95:1037–1065

    CAS  PubMed  Google Scholar 

  • Larsson K-H, Parmasto E, Fischer M, Langer E, Nakasone KK, Redhead SA (2006) Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia 98:926–936

    PubMed  Google Scholar 

  • Larsson K-H, Læssøe T, Yorou NS, Ryvarden L (2011) The phylogenetic position of Hydnodon and Scytinopogon. Inoculum 62:28

    Google Scholar 

  • Lawrey JD, Binder M, Diederich P, Molina MC, Sikaroodi M, Ertz D (2007) Phylogenetic diversity of lichen-associated homobasidiomycetes. Mol Phylogenet Evol 44:778–789

    CAS  PubMed  Google Scholar 

  • Lawrey JD, Diederich P, Sikaroodi M, Gillevet PM (2008) Remarkable nutritional diversity of basidiomycetes in the Corticiales, including a new foliicolous species of Marchandiomyces (anamorphic Basidiomycota, Corticiaceae) from Australia. Am J Bot 95:816–823

    PubMed  Google Scholar 

  • Lawrey JD, Lücking R, Sipman HJ, Chaves JL, Redhead SA, Bungartz F, Sikaroodi M, Gillevet PM (2009) High concentration of basidiolichens in a single family of agaricoid mushrooms (Basidiomycota: Agaricales: Hygrophoraceae). Mycol Res 113:1154–1171

    CAS  PubMed  Google Scholar 

  • Lebel T, Syme A (2012) Sequestrate species of Agaricus and Macrolepiota from Australia: new species and combinations and their position in a calibrated phylogeny. Mycologia 104:496–520

    PubMed  Google Scholar 

  • Lebel T, Tonkin JE (2007) Australasian species of Macowanites are sequestrate species of Russula (Russulaceae, Basidiomycota). Aust Syst Bot 20:355–381

    Google Scholar 

  • Lebel T, Orihara T, Maekawa N (2012) The sequestrate genus Rossbeevera T. Lebel & Orihara gen. nov. (Boletaceae) from Australasia and Japan: new species and new combinations. Fungal Divers 52:49–71

    Google Scholar 

  • Lee JS, Lim YW (2009) Cerrena aurantiopora sp. nov. (Polyporaceae) from eastern Asia. Mycologia 102:211–216

    Google Scholar 

  • Lehmkuhl JF, Gould LF, Cazares E, Hosford DR (2004) Truffle abundance and mycophagy by northern flying squirrels in eastern Washington forests. Forest Ecol Manage 200:49–65

    Google Scholar 

  • LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410

    CAS  PubMed  Google Scholar 

  • Li H, Cui B (2013) Taxonomy and phylogeny of the genus Megasporoporia and its related genera. Mycologia 105:368–383

    PubMed  Google Scholar 

  • Li YC, Feng B, Yang ZL (2011) Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Divers 49:125–143

    Google Scholar 

  • Lilleskov EA, Bruns TD, Horton TR, Taylor D, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332

    CAS  PubMed  Google Scholar 

  • Lim Y, Yeung Y, Sturrock R, Leal I, Breuil C (2005) Differentiating the two closely related species, Phellinus weirii and P. sulphurascens. Forest Pathol 35:305–314

    Google Scholar 

  • Lindequist U, Niedermeyer THJ, Jülich W-D (2005) The pharmacological potential of mushrooms. Evid Based Complement Altern Med 2:285–299

    Google Scholar 

  • Lindner DL, Banik MT (2008) Molecular phylogeny of Laetiporus and other brown rot polypore genera in North America. Mycologia 100:417–430

    CAS  PubMed  Google Scholar 

  • Lindner DL, Ryvarden L, Baroni TJ (2011) A new species of Daedalea (Basidiomycota) and a synopsis of core species in Daedalea sensu stricto. North American Fungi 6:1–12

    Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    CAS  PubMed  Google Scholar 

  • Locquin MV (1974) De Taxia Fungorum I. U.A.E. Mondedition, Paris

    Google Scholar 

  • Lodge DL, Padamsee M, Matheny PB, Aime MC, Cantrell SA, Boertmann D, Kovalenko A, Vizzini A, Dentinger B, Kirk P, Ainsworth M, Moncalvo J-M, Vilgalys R, Larsson E, Lücking R, Griffith G, Smith M, Norvell LL, Desjardin DE, Redhead SA, Ovrebo CL, Lickey E, Ercole E, Hughes KW, Courtecuisse R, Young A, Binder M, Minnis A, Lindner DL, Ortiz-Sanatan B, Haight J, Læssøe T, Baroni TJ, Geml J, Hattori T (2013) Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Divers 64:1–99. doi:10.1007/s13225-013-0259-0

    Google Scholar 

  • Malajczuk N (1988) Ecology and management of ectomycorrhizal fungi in regenerated ecosystems in Australia. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. University of Florida, Gainesville, FL, pp 118–120

    Google Scholar 

  • Martinez D, Larrondo L, Putnam N, Gelpke M, Huang K, Chapman J, Helfenbein K, Ramaiya P, Detter J, Larimer F, Coutinho P, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    CAS  PubMed  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kues U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masui K (1926) A study of the mycorrhiza of Abies firma, S. et Z., with special reference to its mycorrhizal fungus, Cantharellus floccosus, Schw. Memoirs of the College of Science, Kyoto Imperial University, Series B 2:1–84

    Google Scholar 

  • Masui K (1927) A study of the ectotrophic mycorrhizas of woody plants. Memoirs of the College of Science, Kyoto Imperial University, Series B 3:149–279

    Google Scholar 

  • Mata JL, Halling RE, Hughes KW, Petersen RH (2004) Rhodocollybia in neotropical montane forests. Mycol Prog 3:337–352

    Google Scholar 

  • Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1–20

    CAS  PubMed  Google Scholar 

  • Matheny PB, Griffith GW (2010) Mycoparasitism between Squamanita paradoxa and Cystoderma amianthinum (Cystodermateae, Agaricales). Mycoscience 51:456–461

    Google Scholar 

  • Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995

    PubMed  Google Scholar 

  • Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Frøslev T, Ge ZW, Kerrigan RW, Slot JC, Yang Z-L, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451

    CAS  PubMed  Google Scholar 

  • Matheny PB, Aime MC, Bougher NL, Buyck B, Desjardin DE, Horak E, Kropp BR, Lodge DJ, Soytong K, Trappe JM, Hibbett DS (2009) Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J Biogeogr 36:577–592

    Google Scholar 

  • Matsuura K (2006) Termite-egg mimicry by a sclerotium-forming fungus. Proc R Soc B Biol Sci 273:1203–1209

    Google Scholar 

  • Matsuura K, Tanaka C, Nishida T (2000) Symbiosis of a termite and a sclerotium forming fungus: Sclerotia mimic termite eggs. Ecol Res 15:405–414

    Google Scholar 

  • Matsuura K, Yashiro T, Shimizu K, Tatsumi S, Tamura T (2009) Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme beta-glucosidase. Curr Biol 19:30–36

    CAS  PubMed  Google Scholar 

  • Mattsson J, Anne-Cathrine Flyen A-C, Nunez M (2010) Wood-decaying fungi in protected buildings and structures on Svalbard. Agarica 29:5–14

    Google Scholar 

  • May TW, Sinnott N, Sinnott A (2010) The truffle-like Protubera canescens is an early developmental stage of the cage fungus Ileodictyon. Victorian Nat 127:49–54

    Google Scholar 

  • McLaughlin DJ, Celio GJ, Padamsee M, Dentinger BTM (2008) Cystidial structure in two genera of the Russulales. Botany 86:545–550

    Google Scholar 

  • Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, Pereira GA (2008) Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe? Mol Plant Pathol 9:577–588

    PubMed  Google Scholar 

  • Miettinen O, Larsson K-H (2010) Sidera, a new genus in Hymenochaetales with poroid and hydnoid species. Mycol Prog 10:131–141

    Google Scholar 

  • Miettinen O, Rajchenberg M (2011) Obba and Sebipora, new polypore genera related to Cinereomyces and Gelatoporia (Polyporales, Basidiomycota). Mycol Prog 11:131–147

    Google Scholar 

  • Miettinen O, Larsson E, Sjökvist E, Larsson K-H (2012) Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota). Cladistics 28:251–270

    Google Scholar 

  • Mikheyev AS, Mueller UG, Abbot P (2010) Comparative dating of attine ant and lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat 175:E126–E133

    PubMed  Google Scholar 

  • Miller OK Jr (1964) Monograph of Chroogomphus (Gomphidiaceae). Mycologia 56:526–549

    Google Scholar 

  • Miller OK Jr, Miller HH (1988) Gasteromycetes: morphological and developmental features with keys to orders, families, and genera. Mad River, Eureka, CA

    Google Scholar 

  • Miller SL, McClean TM, Walker JF, Buyck B (2001) A molecular phylogeny of the Russulales including agaricoid, gasteroid and pleurotoid taxa. Mycologia 93:344–354

    CAS  Google Scholar 

  • Miller SL, Larsson E, Larsson KH, Verbeken A, Nuytinck J (2006) Perspectives in the new Russulales. Mycologia 98:960–970

    PubMed  Google Scholar 

  • Mizuno T (1999) Bioactive substances in Hericium erinaceus (Bull.:Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int J Med Mushrooms 1:105–119

    CAS  Google Scholar 

  • Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaricoid fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305

    CAS  PubMed  Google Scholar 

  • Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Catherine Aime M, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Greg Thorn R, Jacobsson S, Clémençon H, Miller OK Jr (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400

    CAS  PubMed  Google Scholar 

  • Moncalvo J-M, Nilsson RH, Koster B, Dunham SM, Bernauer T, Matheny PB, Porter TM, Margaritescu S, Weiß M, Garnica S, Danell E, Langer G, Langer E, Larsson E, Larsson K-H, Vilgalys R (2006) The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948

    PubMed  Google Scholar 

  • Moreau PA, Peintner U, Gardes M (2006) Phylogeny of the ectomycorrhizal mushroom genus Alnicola (Basidiomycota, Cortinariaceae) based on rDNA sequences with special emphasis on host specificity and morphological characters. Mol Phylogenet Evol 38:794–807

    CAS  PubMed  Google Scholar 

  • Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, Ohm RA, Patyshakuliyeva A, Brun A, Aerts AL, Bailey AM, Billette C, Coutinho PM, Deakin G, Doddapaneni H, Floudas D, Grimwood J, Hildén K, Kües U, Labutti KM, Lapidus A, Lindquist EA, Lucas SM, Murat C, Riley RW, Salamov AA, Schmutz J, Subramanian V, Wösten HA, Xu J, Eastwood DC, Foster GD, Sonnenberg AS, Cullen D, de Vries RP, Lundell T, Hibbett DS, Henrissat B, Burton KS, Kerrigan RW, Challen MP, Grigoriev IV, Martin F (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moser M (1983) Die Röhrlinge und Blätterpilze (Polyporales, Boletales, Agaricales, Russulales). Kleine Kryptogamenflora IIb/2. Basidiomyceten, 5th edn. Gustav Fischer, Stuttgart

    Google Scholar 

  • Mosquera-Espinosa AT, Bayman P, Prado GA, Gómez-Carabali A, Otero JT (2013) The double life of Ceratobasidium orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia 205:141–150

    Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Google Scholar 

  • Nagy LG, Házi J, Szappanos B, Kocsubé S, Bálint B, Rákhely G, Vágvölgyi C, Papp T (2012) The evolution of defense mechanisms correlate with the explosive diversification of autodigesting Coprinellus mushrooms (Agaricales, Fungi). Syst Biol 61:595–607

    PubMed  Google Scholar 

  • Nakasone KK (1990a) Cultural studies and identification of wood-inhabiting Corticiaceae and selected Hymenomycetes from North America. Mycologia Memoir No. 15. J. Cramer, Berlin

    Google Scholar 

  • Nakasone KK (1990b) Taxonomic study of Veluticeps (Aphyllophorales). Mycologia 82:622–641

    Google Scholar 

  • Nakasone KK (2007) Morphological and molecular studies on Resinicium s. str. Can J Bot 85:420–436

    CAS  Google Scholar 

  • Nakasone KK (2012) Tsugacorticium kenaicum (Hymenochaetales, Basidiomycota), a new corticioid genus and species from Alaska. North Am Fungi 7:1–9. doi:10.2509/naf2012.007.001

    Google Scholar 

  • Nannfeldt JA, Eriksson J (1953) On the hymenomycetous genus Jaapia Bres. and its taxonomical position. Svensk Bot Tidskr 47:177–189

    Google Scholar 

  • Nelsen MP, Lücking R, Umaña L, Trest MT, Will-Wolf S, Chaves JL, Gargas A (2007) Multiclavula ichthyiformis (Fungi: Basidiomycota: Cantharellales: Clavulinaceae), a remarkable new basidiolichen from Costa Rica. Am J Bot 94:1289–1296

    PubMed  Google Scholar 

  • Neves MA, Binder M, Halling RE, Hibbett DS, Soytong K (2012) The phylogeny of selected Phylloporus species, inferred from NUC-LSU and ITS sequences, and descriptions of new species from the Old World. Fungal Divers 55:109–123

    Google Scholar 

  • Neville P, Poumarat S (2004) Amaniteae (Amanita, Limacella, Torrendia). Fungi Europaei, vol 9. Candusso, Alassio

    Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Google Scholar 

  • Newsham KK, Bridge PD (2010) Sebacinales are associates of the leafy liverwort Lophozia excisa in the southern maritime Antarctic. Mycorrhiza 20:307–313

    CAS  PubMed  Google Scholar 

  • Nielsen C, Williams DW, Hajek AE (2009) Putative source of the invasive Sirex noctilio fungal symbiont, Amylostereum areolatum, in the eastern United States and its association with native siricid woodwasps. Mycol Res 113:1242–1253

    PubMed  Google Scholar 

  • Niemelä T (2005) Käävät, puiden sienet. Polypores, lignicolous fungi. Norrlinia 13:1–320

    Google Scholar 

  • Niemelä T, Larsson K-H, Dai Y-C, Larsson E (2007) Anomoloma, a new polypore genus separated from Anomoporia on the basis of decay type and molecular phylogenetic data. Mycotaxon 100:305–318

    Google Scholar 

  • Nilsson T, Ginns J (1979) Cellulolytic activity and the taxonomic position of selected brown-rot fungi. Mycologia 71:170–177

    Google Scholar 

  • Nilsson RH, Larsson K-H, Larsson E, Kõljalg U (2006) Fruiting body-guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycol Res 110:1426–1432

    CAS  PubMed  Google Scholar 

  • Nobre T, Kone NA, Konate S, Linsenmair KE, Aanen DK (2011) Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol Ecol 20:2619–2627

    CAS  PubMed  Google Scholar 

  • Noordeloos ME (2011) Strophariaceae s.lato. Fungi Europaei, vol 13. Candusso, Alassio

    Google Scholar 

  • Nouhra ER, Domínguez de Toledo LS (1994) Interacción entre Phallales (Basidiomycotina) e insectos (Coleópteros y Dípteros). Boletín de la Socieded Argentina de Botánica 30:21–24

    Google Scholar 

  • Nouhra ER, Horton TR, Cazares E, Castellano MA (2005) Morphological and molecular characterization of selected Ramaria mycorrhizae. Mycorrhiza 15:55–59

    CAS  PubMed  Google Scholar 

  • Nuhn ME, Binder M, Taylor AFS, Halling RE, Hibbett DS (2013) Phylogenetic overview of Boletineae. Fungal Biol 117:479–511

    PubMed  Google Scholar 

  • Nuñez M, Ryvarden L (2000) East Asian Polypores, volume 1 – Ganodermataceae and Hymenochaetaceae. Synopsis Fungorum 13:1–168

    Google Scholar 

  • Nuytinck J, Verbeken A, Delarue S, Walleyn R (2004) Systematics of European sequestrate lactarioid Russulaceae with spiny spore ornamentation. Belgian J Bot 136:145–153

    Google Scholar 

  • O’Donnell K, Lutzoni F, Ward TJ, Benny GL (2001) Evolutionary relationships among mucoralean Fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia 93:286–297

    Google Scholar 

  • Oberwinkler F (1970) Die Gattungen der Basidiolichenen. Vorträge aus dem Gesamtgebiet der Botanik, Neue Folge 4:139–169

    Google Scholar 

  • Oberwinkler F (1975) Eine agaricoide Gattung der Thelephorales. Sydowia 28:359–361

    Google Scholar 

  • Oberwinkler F (1977) Das neue System der Basidiomyceten. In: Frey W, Hurka H, Oberwinkler F (eds) Beiträge zur Biologie der niederen Pflanzen. Gustav Fischer, Stuttgart, pp 59–105

    Google Scholar 

  • Oberwinkler F (2012) Basidiolichens. In: Hock B (ed) Fungal associations. The Mycota IX, 2nd edn. Springer, Berlin

    Google Scholar 

  • Oberwinkler F (2014) Dacrymycetes. In: McLaughlin DJ, Spatafora JW (eds) The Mycota: Systematics and evolution: Part B. Springer, Heidelberg

    Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Kirschner R, Garnica S (2013a) Taxonomic re-evaluation of the Ceratobasidium-Rhizoctonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycol Prog 12:763–776

    Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Selosse MA, Weiss M, Garnica S, Zuccaro A (2013b) Enigmatic Sebacinales. Mycol Prog 12:1–27

    Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, vanKuyk PA, Horton JS, Grigoriev IV, Wosten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963

    CAS  PubMed  Google Scholar 

  • Olsson PA, Münzenberger B, Mahmood S, Erland S (2000) Molecular and anatomical evidence for a three-way association between Pinus sylvestris and the ectomycorrhizal fungi Suillus bovinus and Gomphidius roseus. Mycol Res 104:1372–1378

    Google Scholar 

  • Orihara T, Sawada F, Ikeda S, Yamato M, Tanaka C, Shimomura N, Hashiya M, Iwase K (2010) Taxonomic reconsideration of a sequestrate fungus, Octaviania columellifera, with the proposal of a new genus, Heliogaster, and its phylogenetic relationships in the Boletales. Mycologia 102:108–121

    CAS  PubMed  Google Scholar 

  • Ortiz-Santana B, Lindner DL, Miettinen O, Justo A, Hibbett D (2013) A phylogenetic overview of the Antrodia clade (Basidiomycota, Polyporales). Mycologia 105:1391–1411

    CAS  PubMed  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Sanfuentes E, Rodrigues J (2008) Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers 33:77–86

    Google Scholar 

  • Otjen L, Blanchette RA (1984) Xylobolus frustulatus decay of oak: patterns of selective delignification and subsequent cellulose removal. Appl Environ Microbiol 47:670–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padamsee M, Kumar TKA, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY, LaButti K, Lapidus A, Lindquist E, Lucas S, Miller K, Shantappa S, Grigoriev IV, Hibbett DS, McLaughlin DJ, Spatafora JW, Aime MC (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fung Genet Biol 49:217–226

    CAS  Google Scholar 

  • Palice Z, Schmitt I, Lumbsch HT (2005) Molecular data confirm that Omphalina foliacea is a lichen-forming basidiomycete. Mycol Res 109:447–451

    CAS  PubMed  Google Scholar 

  • Parmasto E (2010) Clavariachaetaceae, a family of neotropical Hymenochaetales (Basidiomycota) including clavarioid, pileate and resupinate species. Folia Cryptogamica Estonica 47:51–57

    Google Scholar 

  • Parmasto E, Saar I, Larsson E, Rummo S (2013) Phylogenetic taxonomy of Hymenochaete and related genera (Hymenochaetales). Mycol Prog 12:1–10

    Google Scholar 

  • Parmeter JR (ed) (1970) Rhizoctonia solani: biology and pathology. University of California Press, Berkeley, CA

    Google Scholar 

  • Parra-Sánchez LA (2008) Agaricus L. – Allopsalliota. Fungi Europaei, vol 1. Candusso, Alassio

    Google Scholar 

  • Paulus B, Hallenberg N, Buchanan PK, Chambers GK (2000) A phylogenetic study of the genus Schizopora (Basidiomycota) based on ITS DNA sequences. Mycol Res 104:1155–1163

    CAS  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2008) Fungal community ecology: a hybrid beast with a molecular master. BioScience 58:799–810

    Google Scholar 

  • Pegler DN, Young TWK (1981) A natural arrangement of the Boletales, with reference to spore morphology. Trans Br Mycol Soc 76:103–146

    Google Scholar 

  • Peintner U, Moncalvo JM, Vilgalys R (2004) Toward a better understanding of the infrageneric relationships in Cortinarius (Agaricales, Basidiomycota). Mycologia 96:1042–1058

    CAS  PubMed  Google Scholar 

  • Petersen RH (1971a) Evolution in the higher basidiomycetes. University of Tennessee Press, Knoxville, TN

    Google Scholar 

  • Petersen RH (1971b) The genera Gomphus and Gloeocantharellus in North America. Nova Hedwigia 21:1–118

    Google Scholar 

  • Petersen JH (2012) The kingdom of fungi. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Petersen RH, Hughes KW (2010) The Xerula/Oudemansiella complex. Nova Hedwigia Beih 137:1–625

    Google Scholar 

  • Pildain MB, Rajchenberg M (2013) The phylogenetic position of Postia s.l. (Polyporales, Basidiomycota) from Patagonia, Argentina. Mycologia 105:357–367

    CAS  PubMed  Google Scholar 

  • Pine EM, Hibbett DS, Donoghue MJ (1999) Phylogenetic relationships of cantharelloid and clavarioid Homobasidiomycetes based on mitochondrial and nuclear rDNA sequences. Mycologia 91:944–963

    CAS  Google Scholar 

  • Poinar GO Jr, Brown AE (2003) A non-gilled hymenomycete in Cretaceous amber. Mycol Res 107:763–768

    PubMed  Google Scholar 

  • Poinar GO Jr, Buckley R (2007) Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber. Mycol Res 111:503–506

    PubMed  Google Scholar 

  • Poinar GO Jr, Singer R (1990) Upper Eocene gilled mushroom from the Dominican Republic. Science 248:1099–1101

    PubMed  Google Scholar 

  • Porras-Alfaro A, Lipinski K, Herrera J, Natvig DO, Sinsabaugh RL (2011) Diversity and distribution patterns of soil fungal communities in a semiarid grassland. Mycologia 103:10–21

    PubMed  Google Scholar 

  • Pouzar Z (1985) Proposals for the conservation of five family names of fungi. Taxon 34:709–712

    Google Scholar 

  • Preussing M, Nebel M, Oberwinkler F, Weiß M (2010) Diverging diversity patterns in the Tulasnella (Basidiomycota, Tulasnellales) mycobionts of Aneura pinguis (Marchantiophyta, Metzgeriales) from Europe and Ecuador. Mycorrhiza 20:147–159

    PubMed  Google Scholar 

  • Pringle A, Adams RI, Cross HB, Bruns TD (2009) The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America. Mol Ecol 18:817–833

    CAS  PubMed  Google Scholar 

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol 23:97–127

    CAS  Google Scholar 

  • Qiang X, Weiß M, Kogel K-H, Schäfer P (2012) Piriformospora indica – a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 13:508–518

    CAS  PubMed  Google Scholar 

  • Rajchenberg M, Gorjón SP, Pildain MB (2011) The phylogenetic disposition of Antrodia s.l. (Polyporales, Basidiomycota) from Patagonia, Argentina. Aust Syst Bot 24:111–120

    Google Scholar 

  • Ramírez-Cruz V, Guzmán G, Villalobos-Arámbula AR, Rodríguez A, Matheny PB, Sánchez-García G-DL (2013) Phylogenetic inference of the psychedelic mushroom genus Psilocybe sensu lato. Botany 91:573–591

    Google Scholar 

  • Raper JR, Miles PG (1958) The genetics of Schizophyllum commune. Genetics 43:530–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redberg GL, Hibbett DS, Ammirati JF, Rodriguez RJ (2003) Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences. Mycologia 95:836–845

    CAS  PubMed  Google Scholar 

  • Redhead SA (1981) Parasitism of bryophyes by agarics. Can J Bot 59:63–67

    Google Scholar 

  • Redhead SA, Ginns J (1985) A reappraisal of agaric genera associated with brown rots of wood. Trans Mycol Soc Japan 26:349–381

    Google Scholar 

  • Redhead SA, Lutzoni F, Moncalvo JM, Vilgalys R (2002) Phylogeny of agarics: partial systematics solutions for core omphalinoid genera in the Agaricales (Euagarics). Mycotaxon 83:19–57

    Google Scholar 

  • Reijnders AFM, Stalpers JS (1992) The development of the hymenophoral trama in the Aphyllophorales and the Agaricales. Stud Mycol 34:1–109

    Google Scholar 

  • Riess K, Oberwinkler F, Bauer R, Garnica S (2013) High genetic diversity at the regional scale and possible speciation in Sebacina epigaea and S. incrustans. BMC Evol Biol 13:102

    PubMed  PubMed Central  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Robledo GL, Amalfi M, Castillo G, Rajchenberg M, Decock C (2009) Perenniporiella chaquenia sp. nov. and further notes on Perenniporiella and its relationships with Perenniporia (Poriales, Basidiomycota). Mycologia 101:657–673

    PubMed  Google Scholar 

  • Rogers DP (1932) A cytological study of Tulasnella. Botanical Gazette 94:86–105

    Google Scholar 

  • Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    PubMed  PubMed Central  Google Scholar 

  • Ruiz-Duenas FJ, Lundell T, Floudas D, Nagy L, Barrassa JM, Hibbett D, Martínez AT (2013) Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on ten sequenced genomes. Mycologia 105:1428–1444

    CAS  PubMed  Google Scholar 

  • Rungjindamai N, Pinruan U, Choeyklin R, Hattori T, Jones EBG (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers 33:139–161

    Google Scholar 

  • Ryberg M, Matheny PB (2012) Asynchronous origins of ectomycorrhizal clades of Agaricales. Proc R Soc B Biol Sci 279:2003–2011

    Google Scholar 

  • Ryberg M, Larsson E, Jacobsson S (2010) An evolutionary perspective on morphological and ecological characters in the mushroom family Inocybaceae (Agaricomycotina, Fungi). Mol Phylogenet Evol 55:431–442

    PubMed  Google Scholar 

  • Ryvarden L (1991) Genera of polypores. Nomenclature and taxonomy. Synopsis Fungorum 5:1–363

    Google Scholar 

  • Ryvarden L (2004) Neotropical polypores, part 1 – introduction, Ganodermataceae and Hymenochaetaceae. Synopsis Fungorum 19:1–228

    Google Scholar 

  • Saar I, Põldmaa K, Kõljalg U (2009) The phylogeny and taxonomy of genera Cystoderma and Cystodermella (Agaricales) based on nuclear ITS and LSU sequences. Mycol Prog 8:59–73

    Google Scholar 

  • Sahr T, Ammer H, Besl H, Fischer M (1999) Infrageneric classification of the boleticolous genus Sepedonium: species delimitation and phylogenetic relationships. Mycologia 91:935–943

    Google Scholar 

  • Sánchez-García M, Cifuentes-Blanco J, Matheny PB (2013) Revisión taxonómica del género Melanoleuca en México y descripción de especies nuevas. Revista Mexicana de Biodiversidad 84:S111–S127

    Google Scholar 

  • Schmidt O, Kebernik U (1989) Characterization and identification of the dry rot fungus Serpula lacrymans by polyacrylamide gel electrophoresis. Holzforschung 43:195–198

    CAS  Google Scholar 

  • Schmidt O, Grimm K, Moreth U (2002) Molecular identity of species and isolates of the Coniophora cellar fungi. Holzforschung 56:563–571

    CAS  Google Scholar 

  • Seitzman BH, Ouimette A, Mixon RL, Hobbie EA, Hibbett DS (2011) Conservation of biotrophy in Hygrophoraceae inferred from combined stable isotope and phylogenetic analyses. Mycologia 103:280–290

    PubMed  Google Scholar 

  • Sell I, Kotiranta H, Miettinen O, Põldmaa K (2013) Molecular analysis confirms that Botryodontia millavensis and Oxyporus philadelphi are conspecific. Mycol Prog 13:65–74. doi:10.1007/s11557-013-0893-7

    Google Scholar 

  • Selosse M-A, Weiß M, Jany J-L, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    CAS  PubMed  Google Scholar 

  • Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    CAS  PubMed  Google Scholar 

  • Selosse M-A, Dubois M-P, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069

    CAS  PubMed  Google Scholar 

  • Setaro S, Weiß M, Oberwinkler F, Kottke I (2006) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    CAS  PubMed  Google Scholar 

  • Sigler L, de la Maza LM, Tan G, Egger KN, Sherburne RK (1995) Diagnostic difficulties caused by a nonclamped Schizophyllum commune isolate in a case of fungus ball of the lung. J Clin Microbiol 33:1979–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer R (1965) Die Röhrlinge. Teil I. Boletaceae (ohne Boletoideae). J. Klinkhardt, Bad Heilbrunn, Germany

    Google Scholar 

  • Singer R (1967) Die Röhrlinge. Teil II. Die Boletoideae und Strobilomycetaceae. J. Klinkhardt, Bad Heilbrunn, Germany

    Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz, Königstein, Germany

    Google Scholar 

  • Sjökvist E, Larsson E, Eberhardt U, Ryvarden L, Larsson K-H (2012) Stipitate stereoid basidiocarps have evolved multiple times. Mycologia 104:1046–1055

    PubMed  Google Scholar 

  • Skrede I, Engh I, Binder M, Carlsen T, Kauserud H, Bendiksby M (2011) Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol Biol 11:230

    PubMed  PubMed Central  Google Scholar 

  • Slippers B, Wingfield MJ, Coutinho TA, Wingfield BD (2001) Population structure and possible origin of Amylostereum areolatum in South Africa. Plant Pathol 50:206–210

    Google Scholar 

  • Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ (2003) A review of the genus Amylostereum and its association with woodwasps. S Afr J Sci 99:70–74

    Google Scholar 

  • Smith AH, Thiers HD (1971) The boletes of Michigan. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Smith SY, Currah RS, Stockey RA (2004) Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 96:180–186

    PubMed  Google Scholar 

  • Smith ME, Schell KJ, Castellano MA, Trappe MJ, Trappe JM (2013) The enigmatic truffle Fevansia aurantiaca is an ectomycorrhizal member of the Albatrellus lineage. Mycorrhiza 23:663–668

    PubMed  Google Scholar 

  • Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) (1996) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer, Dordrecht

    Google Scholar 

  • Sotome K, Hattori T, Ota Y, To-anun C, Salleh B, Kakishima M (2008) Phylogenetic relationships of Polyporus and morphologically allied genera. Mycologia 100:603–615

    CAS  PubMed  Google Scholar 

  • Sotome K, Akagi Y, Lee SS, Ishikawa NK, Hattori T (2013) Taxonomic study of Favolus and Neofavolus gen. nov. segregated from Polyporus (Basidiomycota, Polyporales). Fungal Divers 58:245–266

    Google Scholar 

  • Spirin V, Miettinen O, Pennanen J, Kotiranta H, Niemelä T (2012) Antrodia hyalina, a new polypore from Russia, and A. leucaena, new to Europe. Mycol Prog 12:53–61

    Google Scholar 

  • Spirin V, Vlasák J, Niemelä T, Miettinen O (2013) What is Antrodia sensu stricto? Mycologia 105:1555–1576

    CAS  PubMed  Google Scholar 

  • Stajich JE, Wilke SK, Ahren D, Au CH, Birren BW, Borodovsky M, Burns C, Canback B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigo R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru S, Kodira C, Kues U, Kupfer D, Kwan HS, Lomsadze A, Li W, Lilly WW, Ma LJ, Mackey AJ, Manning G, Martin F, Muraguchi H, Natvig DO, Palmerini H, Ramesh MA, Rehmeyer CJ, Roe BA, Shenoy N, Stanke M, Ter-Hovhannisyan V, Tunlid A, Velagapudi R, Vision TJ, Zeng Q, Zolan ME, Pukkila PJ (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci USA 107:11889–11894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stalpers JA (1978) Identification of wood-inhabiting Aphyllophorales in pure cuture. Stud Mycol 16:1–248

    Google Scholar 

  • Stalpers JA (1993) The aphyllophoraceous fungi. I. Keys to the species of the Thelephorales. Stud Mycol 35:1–168

    Google Scholar 

  • Stalpers JA, Loerakker WM (1982) Laetisaria and Limonomyces species (Corticiaceae) causing pink diseases in turf grasses. Can J Bot 60:529–537

    Google Scholar 

  • Sterner O, Bergman R, Kihlberg J, Wickberg B (1985) The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system. J Nat Prod 48:279–288

    CAS  Google Scholar 

  • Sunhede S (1989) Geastraceae (Basidiomycotina): morphology, ecology, and systematics with special emphasis on the North European species. Synopsis Fungorum 1. Fungiflora, Oslo

    Google Scholar 

  • Šutara J (2008) Xerocomus s. l. in the light of the present state of knowledge. Czech Mycol 60:29–62

    Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849

    PubMed  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    CAS  PubMed  Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2014) Fungal diversity in the fossil record. In: McLaughlin DJ, Spatafora JW (eds) The Mycota, vol 7B, Systematics and evolution. Springer, Berlin

    Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fung Biol Rev 27:83–99

    Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Saar I (2007) Ectomycorrhizas of Coltricia and Coltriciella (Hymenochaetales, Basidiomycota) on Caesalpiniaceae, Dipterocarpaceae and Myrtaceae in Seychelles. Mycol Prog 6:101–107

    Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    PubMed  Google Scholar 

  • Telleria MT, Duenas M, Melo I, Hallenberg N, Martin MP (2010) A re-evaluation of Hypochnicium (Polyporales) based on morphological and molecular characters. Mycologia 102:1426–1436

    PubMed  Google Scholar 

  • Telleria MT, Melo I, Dueñas M, Salcedo I, Beltrán-Tejera E, Rodríguez-Armas JL, Martín M (2012) Sistotremastrum guttuliferum: a new species from the Macaronesian islands. Mycol Prog 12:687–692

    Google Scholar 

  • Telleria MT, Melo I, Dueñas M, Larsson K-H, Martin MP (2013) Molecular analyses confirm Brevicellicium in Trechisporales. IMA Fungus 4:21–28

    PubMed  PubMed Central  Google Scholar 

  • Thiers HD (1984) The secotioid syndrome. Mycologia 76:1–8

    Google Scholar 

  • Thomas SE, Crozier J, Aime MC, Evans HC, Holmes KA (2008) Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador. Mycol Res 112:852–860

    CAS  PubMed  Google Scholar 

  • Thorn RG, Moncalvo J-M, Reddy CA, Vilgalys R (2000) Phylogenetic analyses and the distribution of nematophagy support a monophyletic Pleurotaceae within the polyphyletic pleurotoid-lentinoid fungi. Mycologia 92:241–252

    Google Scholar 

  • Tian X-M, Yu H-Y, Zhou L-W, Decock C, Vlasák J, Dai Y-C (2013) Phylogeny and taxonomy of the Inonotus linteus complex. Fungal Divers 58:159–169

    Google Scholar 

  • Tibuhwa DD, Savić S, Tibell L, Kivaisi AK (2012) Afrocantharellus gen. stat. nov. is part of a rich diversity of African Cantharellaceae. IMA Fungus 3:25–38

    PubMed  PubMed Central  Google Scholar 

  • Tomšovský M (2008) Molecular phylogeny and taxonomic position of Trametes cervina and description of a new genus Trametopsis. Czech Mycol 60:1–11

    Google Scholar 

  • Tomšovský M, Sedlák P, Jankovský L (2009) Species recognition and phylogenetic relationships of European Porodaedalea (Basidiomycota, Hymenochaetales). Mycol Prog 9:225–233

    Google Scholar 

  • Tomšovský M, Menkis A, Vasaitis R (2010a) Phylogenetic relationships in European Ceriporiopsis species inferred from nuclear and mitochondrial ribosomal DNA sequences. Fungal Biol 114:350–358

    PubMed  Google Scholar 

  • Tomšovský M, Vampola P, Sedlák P, Byrtusová Z, Jankovský L (2010b) Delimitation of central and northern European species of the Phellinus igniarius group (Basidiomycota, Hymenochaetales) based on analysis of ITS and translation elongation factor 1 alpha DNA sequences. Mycol Prog 9:431–445

    Google Scholar 

  • Tóth A, Hausknecht A, Krisai-Greilhuber I, Papp T, Vágvölgyi C, Nagy LG (2013) Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family Bolbitiaceae. PLoS One 8:e56143

    PubMed  PubMed Central  Google Scholar 

  • Trappe JM, Castellano MA, Halling RE, Osmundson TW, Binder M, Fechner N, Malajczuk N (2013) Australasian sequestrate fungi. 18: Solioccasus polychromus gen. & sp. nov., a richly colored, tropical to subtropical, hypogeous fungus. Mycologia 105:888–895

    PubMed  Google Scholar 

  • Tuno N (1998) Spore dispersal of Dictyophora fungi (Phallaceae) by flies. Ecol Res 13:7–15

    Google Scholar 

  • Tzean SS, Liou JY (1993) Nematophagous resupinate basidiomycetous fungi. Phytopathol 83:1015–1020

    Google Scholar 

  • Uehling JK, Henkel TW, Aime MC, Vilgalys R, Smith ME (2012a) New species of Clavulina (Cantharellales, Basidiomycota) with resupinate and effused basidiomata from the Guiana Shield. Mycologia 104:547–556

    PubMed  Google Scholar 

  • Uehling JK, Henkel TW, Aime NC, Vilgalys R, Smith ME (2012b) New species and distribution records for Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield, with a key to the lowland neotropical taxa. Fungal Biol 116:1263–1274

    PubMed  Google Scholar 

  • Underwood LM (1899) Moulds, mildews and mushrooms: a guide to the systematic study of the Fungi and Mycetozoa and their literature. Henry Holt, New York, Ny

    Google Scholar 

  • Urban A, Weiß M, Bauer R (2003) Ectomycorrhizae involving sebacinoid mycobionts. Mycol Res 107:3–14

    PubMed  Google Scholar 

  • Valenzuela R, Raymundo T, Cifuentes J, Castillo G, Amalfi M, Decock C (2010) Two undescribed species of Phylloporia from Mexico based on morphological and phylogenetic evidence. Mycol Prog 10:341–349

    Google Scholar 

  • Vampola P, Vlasak J (2012) Rigidoporus pouzarii, a new polypore species related to Rigidoporus crocatus. Czech Mycol 64:3–11

    Google Scholar 

  • van Driel KGA, Humbel BM, Verkleij AJ, Stalpers J, Müller WH, Boekhout T (2009) Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycol Res 113:559–576

    PubMed  Google Scholar 

  • Veldre V, Abarenkov K, Bahram M, Martos F, Selosse M-A, Tamm H, Kõljalg U, Tedersoo L (2013) Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol 6:256–268

    Google Scholar 

  • Vellinga EC (2004) Genera in the family Agaricaceae: evidence from nrITS and nrLSU sequences. Mycol Res 108:354–377

    CAS  PubMed  Google Scholar 

  • Vellinga EC, Sysouphanthong P, Hyde KD (2011) The family Agaricaceae: phylogenies and two new white-spored genera. Mycologia 103:494–509

    PubMed  Google Scholar 

  • Villegas M, De Luna E, Cifuentes J, Estrada-Torres A (1999) Phylogenetic studies in Gomphaceae sensu lato (Basidiomycetes). Mycotaxon 70:127–147

    Google Scholar 

  • Villegas M, Cifuentes J, Torres AE (2005) Sporal characters in Gomphales and their significance for phylogenetics. Fungal Divers 18:157–175

    Google Scholar 

  • Vizzini A, Para R, Fontenla R, Ghignone S, Ercole E (2012) A preliminary ITS phylogeny of Melanoleuca (Agaricales), with special reference to European taxa. Mycotaxon 118:361–381

    Google Scholar 

  • Vlasák J, Kout J (2010) Pileate Fomitiporia species in the USA. New combinations Fomitiporia calkinsii and F. bakeri. Mycol Prog 10:445–452

    Google Scholar 

  • Wagner T, Fischer M (2001) Natural groups and a revised system for the European poroid Hymenochaetales (Basidiomycota) supported by nLSU rDNA sequence data. Mycol Res 105:773–782

    Google Scholar 

  • Wagner T, Fischer M (2002a) Classification and phylogenetic relationships of Hymenochaete and allied genera of the Hymenochaetales, inferred from rDNA sequence data and nuclear behaviour of vegetative mycelium. Mycol Prog 1:93–104

    Google Scholar 

  • Wagner T, Fischer M (2002b) Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia 94:998–1016

    PubMed  Google Scholar 

  • Wagner T, Ryvarden L (2002) Phylogeny and taxonomy of the genus Phylloporia (Hymenochaetales). Mycol Prog 1:105–116

    Google Scholar 

  • Walther G, Garnica S, Weiß M (2005) The systematic relevance of conidiogenesis modes in the gilled Agaricales. Mycol Res 109:525–544

    CAS  PubMed  Google Scholar 

  • Wang Z, Binder M, Dai YC, Hibbett DS (2004) Phylogenetic relationships of Sparassis inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia 96:1015–1029

    CAS  PubMed  Google Scholar 

  • Wannathes N, Desjardin DE, Hyde KD, Perry BA, Lumyong S (2009) A monograph of Marasmius (Basidiomycota) from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers 37:209–306

    Google Scholar 

  • Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231

    Google Scholar 

  • Watkinson SC, Eastwood DC (2012) Serpula lacrymans, wood and buildings. In: Laskin I, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 78. Academic, Burlington, pp 121–149

    Google Scholar 

  • Watling R (1970) Boletaceae: Gomphidiaceae: Paxillaceae. In: Henderson DM, Orton PD, Watling R (eds) British fungus flora. Agarics and boleti I. Royal Bot Garden, Edinburgh

    Google Scholar 

  • Weiß M, Oberwinkler F (2001) Phylogenetic relationships in Auriculariales and related groups – hypotheses derived from nuclear ribosomal DNA sequences. Mycol Res 105:403–415

    Google Scholar 

  • Weiß M, Bauer R, Begerow D (2004a) Spotlights on heterobasidiomycetes. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in Basidiomycote mycology. IHW, Eching, pp 7–48

    Google Scholar 

  • Weiß M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004b) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    PubMed  Google Scholar 

  • Weiß M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6:e16793

    PubMed  PubMed Central  Google Scholar 

  • Weiß M, Bauer R, Sampaio JP, Oberwinkler F (2014) Tremellomycetes and related groups. In: McLaughlin DJ, Spatafora JW (eds) The Mycota: Systematics and evolution: Part B. Springer, Heidelberg

    Google Scholar 

  • Wells K (1994) Jelly fungi, then and now! Mycologia 86:18–48

    Google Scholar 

  • Wells K, Bandoni R (2001) Heterobasidiomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota. Part B: systematics and evolution, vol VII. Springer, Berlin, pp 85–120

    Google Scholar 

  • Wells K, Oberwinkler F (1982) Tremelloscypha gelatinosa, a species of a new family Sebacinaceae. Mycologia 74:325–331

    Google Scholar 

  • Welti S, Moreau P-A, Favel A, Courtecuisse R, Haon M, Navarro D, Taussac S, Lesage-Meessen L (2012) Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes. Fungal Divers 55:47–64

    Google Scholar 

  • Wilkinson HT (1987) Association of Trechispora alnicola with yellow ring disease of Poa pratensis. Can J Bot 65:150–153

    Google Scholar 

  • Wilson AW, Desjardin DE (2005) Phylogenetic relationships in the gymnopoid and marasmioid fungi (Basidiomycetes, euagarics clade). Mycologia 97:667–679

    CAS  PubMed  Google Scholar 

  • Wilson AW, Hobbie EA, Hibbett DS (2007) The ectomycorrhizal status of Calostoma cinnabarinum determined using isotopic, molecular, and morphological methods. Can J Bot 85:385–393

    CAS  Google Scholar 

  • Wilson AW, Binder M, Hibbett DS (2011) Effects of fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evolution 65:1305–1322

    PubMed  Google Scholar 

  • Wilson AW, Binder M, Hibbett DS (2012) Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol 194:1079–1095

    PubMed  Google Scholar 

  • Wolfe BE, Tulloss RE, Pringle A (2012) The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS One 7:e39597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) (1998) Heterobasidion annosum: biology, ecology, impact and control. CABI, Wallingford

    Google Scholar 

  • Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Google Scholar 

  • Wu S-H, Hibbett DS, Binder M (2001) Phylogenetic analyses of Aleurodiscus s.l. and allied genera. Mycologia 93:720–731

    Google Scholar 

  • Wu S-H, Nilsson HR, Chen C-T, Yu S-Y, Hallenberg N (2010) The white-rotting genus Phanerochaete is polyphyletic and distributed throughout the phleboid clade of the Polyporales (Basidiomycota). Fungal Divers 42:107–118

    Google Scholar 

  • Wu S-H, Dai Y-C, Hattori T, Yu T, Wang D, Parmasto E, Chang H, Shih S (2012) Species clarification for the medicinally valuable ‘sanghuang’ mushroom. Bot Stud 53:135–149

    Google Scholar 

  • Yamaguchi K, Degawa Y, Nakagiri A (2008) An aero-aquatic fungus, Peyronelina glomerulata, is shown to have teleomorphic affinities with cyphelloid basidiomycetes. Mycoscience 50:156–164

    Google Scholar 

  • Yu Z-H, Wu S-H, Wang D-M, Chen C-T (2010) Phylogenetic relationships of Antrodia species and related taxa based on analyses of nuclear large subunit ribosomal DNA sequences. Bot Stud 51:53–60

    CAS  Google Scholar 

  • Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009

    PubMed  Google Scholar 

  • Yurchenko EO, Golubkov VV (2003) The morphology, biology, and geography of a necrotrophic basidiomycete Athelia arachnoidea in Belarus. Mycol Prog 2:275–284

    Google Scholar 

  • Zeller SM (1939) New and noteworthy Gasteromycetes. Mycologia 31:1–32

    Google Scholar 

  • Zeller SM (1949) Keys to the orders, families, and genera of the Gasteromycetes. Mycologia 41:36–58

    Google Scholar 

  • Zeng NK, Cai Q, Yang ZL (2012) Corneroboletus, a new genus to accommodate the southeastern Asian Boletus indecorus. Mycologia 104:1420–1432

    CAS  PubMed  Google Scholar 

  • Zhao RL, Jeewon R, Desjardin DE, Soytong K, Hyde KD (2007) Ribosomal DNA phylogenies of Cyathus: is the current infrageneric classification appropriate? Mycologia 99:385–395

    CAS  PubMed  Google Scholar 

  • Zhao C-L, Cui B-K, Dai Y-C (2013) New species and phylogeny of Perenniporia based on morphological and molecular characters. Fungal Divers 58:47–60

    Google Scholar 

  • Zhou L-W, Dai Y-C (2012) Phylogeny and taxonomy of Phylloporia (Hymenochaetales): new species and a worldwide key to the genus. Mycologia 104:211–222

    PubMed  Google Scholar 

  • Zhou L-W, Dai Y-C (2013) Phylogeny and taxonomy of poroid and lamellate genera in the Auriculariales (Basidiomycota). Mycologia 105:1219–1230

    PubMed  Google Scholar 

  • Zhou L-W, Kõljalg U (2013) A new species of Lenzitopsis (Thelephorales, Basidiomycota) and its phylogenetic placement. Mycoscience 54:87–92

    Google Scholar 

  • Zhou L-W, Qin W-M (2013) Phylogeny and taxonomy of the recently proposed genus Phellinopsis (Hymenochaetales, Basidiomycota). Mycologia 105:689–696

    PubMed  Google Scholar 

  • Zmitrovich IV, Spirin VA (2002) A contribution to the taxonomy of corticioid fungi II. The genera Serpula, Serpulomyces gen. nov., Amylocorticiellum gen. nov. Mikologya Fitopatologya 36:11–26

    Google Scholar 

  • Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sigisfredo Garnica, Romina Gazis, Igor Grigoriev, Christiane Karasch-Wittmann, Urmas Kõljalg, Francis Martin, Rachael Martin, Franz Oberwinkler, and Robert Riley, who provided access to specimens and unpublished results, and Yu-Cheng Dai, Paul Diederich, Doris Haas, M. Jeppson, Lasse Kosonen, Jaroslav Maly, O. Manninen, Guillermo Muñoz, Michael Wood (http://www.mykoweb.com), and Nourou Yourou, who provided images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Hibbett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hibbett, D.S. et al. (2014). 14 Agaricomycetes. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_14

Download citation

Publish with us

Policies and ethics