Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Tokamak Engineering Mechanics

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

In this opening chapter, we present the structure of world energy and the importance of fusion energy to solve world energy issues. In the view of tokamak as a main plant that produces and utilizes effectively the fusion energy, its basic operating principle and its main components are prescribed. During its being constructed tokamak subjects to engineering problems. The solution of its engineering problems commonly involve different mechanics that include solid mechanics, fluid mechanics, heat transfer theory, magnetic solid mechanics, MHD, and so on. Therefore, it is necessary to develop a special mechanics for meeting the requirements of design and manufacturing on tokamak. It is thus named as “tokamak engineering mechanics,” which contains statics, thermal stress, fatigue, fracture, and seismic response analysis and interactions in soil–structure and fluid–structure referring to components of the tokamak. The chapter ends with an overview of how our study on engineering mechanics on the tokamak is organized in the chapters to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BP Company (2012) BP statistical review of world energy

    Google Scholar 

  2. Weisz PB (2004) Basic choices and constraints on long-term energy supplies. Phys Today 57:47–52

    Article  Google Scholar 

  3. Wesson J (1987) Tokamaks (Oxford Engineering Science Series). Clarendon Press, Oxford

    Google Scholar 

  4. http://www.websters-online-dictionary.org/definitions/Tokamak

  5. Dale Meade (2010) 50 years of fusion research. Nucl Fusion 50:1–14

    Google Scholar 

  6. http://www.euronuclear.org/info/encyclopedia/t/tokamak.htm

  7. http://www.iter.org

  8. Yao DM, Song YT, Wu ST et al (2000) Design and structure analyses of HT-7U vacuum vessel, 21st SOFT 2000

    Google Scholar 

  9. Yao DM, Song YT, Wu ST et al (2003) HT-7U vacuum vessel [J]. Fusion Eng Des 69:355–359

    Article  Google Scholar 

  10. Kim BC et al (2008) Recent progress of ITER vacuum vessel related design activities in Korea. Fusion Eng Des 83:1571–1577

    Article  Google Scholar 

  11. ITER DDD (Design Description Document) (2012) 15 Vacuum vessel

    Google Scholar 

  12. Ioki K et al (2010) ITER vacuum vessel design and construction. Fusion Eng Des 85:1307–1313

    Article  Google Scholar 

  13. How J et al (2009) PD—Plant description

    Google Scholar 

  14. Bauer et al P (2009) The ITER magnet feeder systems functional specification and interface document. ITER Organization, Cadarache

    Google Scholar 

  15. Jong CTJ, Mitchell N, Sborchia C (2001) The ITER-FEAT toroidal field structures. Fusion Eng Des 58–59:165–170

    Article  Google Scholar 

  16. Lee YW, Ahn HJ, Choi CH (2003) Structural analysis of the KSTAR toroidal field magnet system. Fusion Eng Des 66–68:1195–1199

    Article  Google Scholar 

  17. Watanabe K, Ikib S, Takiue K (2005) Structural and fracture mechanics analysis of ITER toroidal field coil. Fusion Eng Des 75–79:429–433

    Article  Google Scholar 

  18. Xiao Bingjia, Weng Peide (2006) Integrated analysis of the electromagnetical, thermal, fluid flow fields in a Tokamak. Fusion Eng Des 81:1549–1554

    Article  Google Scholar 

  19. Song Y, Nishio S (2005) Optimization study on the normal conducting center post for the low aspect ratio tokamak reactor. Fusion Eng Des 72:345–362

    Article  Google Scholar 

  20. Tamai H, Kikuchi M, Arai T (1998) Stress analysis for the crack observation in cooling channels of the toroidal field coils in JT-60U. Fusion Eng Des 38:429–439

    Article  Google Scholar 

  21. Takahashi H, Kudo Y, Tsuchiya K (2006) Fracture mechanics analysis including the butt joint geometry for the superconducting conductor conduit of the National Centralized Tokamak. Fusion Eng Des 81:1005–1011

    Article  Google Scholar 

  22. Yao DM, Song YT, Wu ST (2001) Design and structure analysis of the HT-7U vacuum vessel. Fusion Eng Des 58–59:839–843

    Article  Google Scholar 

  23. Song YT, Yao DM, Wu ST (2003) Structure analysis for the HT-7U vacuum vessel during quench of toroidal field. China Mech Eng 14:1261–1264

    Google Scholar 

  24. Song YT (2004) Numerical simulation and analysis for the baking out system of the HT-7U super-conducting Tokamak device. Nucl Power Eng 25:340–345

    Google Scholar 

  25. Song YT, Wu ST (2005) Structure design and stress analysis for the vacuum vessel of HELIMAK device. J Mech Strength 27:640–646

    Google Scholar 

  26. Song YT, Yao DM, Wu ST (2006) Structural analysis and manufacture for the vacuum vessel of experimental advanced superconducting tokamak (EAST) device. Fusion Eng Des 81:1117–1122

    Article  Google Scholar 

  27. Song YT, Peng YH (2007) Analysis of EAST vacuum vessel load due to HALO current. Nucl Fusion Plasma Phys 27:222–226

    Google Scholar 

  28. Santra P, Bedakihale V, Ranganath T (2009) Thermal structural analysis of SST-1 vacuum vessel and cryostat assembly using ANSYS. Fusion Eng Des 84:1708–1712

    Article  Google Scholar 

  29. Liu CL, Yu J, Wu ST (2006) Virtual design of ITER vacuum vessel in-wall shielding structure. China Mech Eng 17:15–18

    Google Scholar 

  30. Liu CL, Wu ST, Yu J (2005) Design of ITER vacuum vessel neutron shielding structure. Nucl Fusion Plasma Phys 25:68–73

    Google Scholar 

  31. Liu CL, Yu J, Wu ST (2007) Thermo-static FEM analysis for neutron shielding component of ITER vacuum vessel. J Mech Strength 29:67–071

    Google Scholar 

  32. Bohn FH, Czymek G, Giesen B (2001) Elastic-plastic cyclic deformation of the TEXTOR 94 modified liner under conditions of heating and plasma disruption. Fusion Eng Des 58–59:875–879

    Article  Google Scholar 

  33. Bykov V, Krasikov Yu, Grigoriev S (2005) The ITER thermal shields for the magnet system: design evolution and analysis. Fusion Eng Des 75–79:155–162

    Article  Google Scholar 

  34. Kim GH, Kim WC, Yang HL (2009) KSTAR thermal shield. Fusion Eng Des 84:1043–1048

    Article  Google Scholar 

  35. Xie H, Liao ZY (2004) Structural design and analysis of thermal load for EAST tokamak thermal shield. Cryogenics 140:50–54

    Google Scholar 

  36. Xie H, Liao ZY (2004) Analysis of thermal load for EAST tokamak cryostat thermal shield design. Cryog Supercond 32:59–62

    Google Scholar 

  37. Xie H, Liao ZY (2005) Structural design and analysis of forces for the thermal shield of the EAST tokamak. Nucl Fusion Plasma Phys 25:133–138

    MathSciNet  Google Scholar 

  38. Xie H, Wang XM, Liao ZY (2006) The analyze of vacuum and heat load for TS of EAST tokamak. Vac Cryog 12:157–161

    Google Scholar 

  39. Liu SM, Tao YT, Wu ST, Wang ZW (2009) Coupled analysis between structure and heat conduction on the thermal shield support of CTB for ITER. Nucl Fusion Plasma Phys 29:166–170

    Google Scholar 

  40. Cardella A, Gohar Y, Gorenflo H (1995) Thermal-mechanical analyses of the ITER shielding blanket designs. Fusion Eng Des 27:467–472

    Google Scholar 

  41. Ying A, Abdou M, Calderoni P (2006) Solid breeder test blanket module design and analysis. Fusion Eng Des 81:659–664

    Article  Google Scholar 

  42. Vitkovsky IV, Golovanov MM, Divavin VA (2000) Neutronic, thermal–hydraulic and stress analysis of RF lithium cooled test blanket module for ITER. Fusion Eng Des 49–50:703–707

    Article  Google Scholar 

  43. Aiello G, Gabriel F, Giancarli L (2007) Thermal–hydraulic analysis of the HCLL DEMO blanket. Fusion Eng Des 82:2189–2194

    Article  Google Scholar 

  44. Ying A, Narula M, Hunt R (2007) Integrated thermo-fluid analysis towards helium flow path design for an ITER solid breeder blanket module. Fusion Eng Des 82:2217–2225

    Google Scholar 

  45. Jordan T, Schneiderb D (1996) Effects of an electrically conducting first wall on the blanket loading during a Tokamak plasma disruption. Fusion Eng Des 31:313–321

    Article  Google Scholar 

  46. Smolentsev S, Abdoua M, Morley NB (2006) Numerical analysis of MHD flow and heat transfer in a poloidal channel of the DCLL blanket with a SiCf/SiC flow channel insert. Fusion Eng Des 81:549–553

    Article  Google Scholar 

  47. Starke K, Bühler L, Horanyi S (2009) Experimental MHD—flow analyses in a mock-up of a test blanket module for ITER. Fusion Eng Des 84:1794–1798

    Article  Google Scholar 

  48. Hua TQ, Gohar Y (1995) MHD pressure drops and thermal hydraulic analysis for the ITER breeding blanket design. Fusion Eng Des 27:696–702

    Google Scholar 

  49. Smolentsev S, Morley N, Abdou M (2005) Code development for analysis of MHD pressure drop reduction in a liquid metal blanket using insulation technique based on a fully developed flow model. Fusion Eng Des 73:83–93

    Article  Google Scholar 

  50. Kurihara R, Ueda S, Nishio S (2001) Fracture mechanics evaluation of a crack generated in SiC/SiC composite first wall. Fusion Eng Des 54:465–471

    Article  Google Scholar 

  51. Pinna T, Boccaccini LV, Salavy JF (2008) Failure mode and effect analysis for the European test blanket modules. Fusion Eng Des 83:1733–1737

    Article  Google Scholar 

  52. Tanchuk V, Grigoriev S, Divavin V (2001) Thermal analysis of the tile impacted by concentrated heat loads caused by the lost of an upstream tile. Fusion Eng Des 56–57:225–231

    Article  Google Scholar 

  53. Kurihara Ryoichi (2002) Thermofluid analysis of free surface liquid divertor in tokamak fusion reactor. Fusion Eng Des 61–62:209–216

    Article  Google Scholar 

  54. Narula M, Abdou MA (2006) A. Ying, Exploring liquid metal plasma facing component (PFC) concepts-Liquid metal film flow behavior under fusion relevant magnetic fields. Fusion Eng Des 81:1543–1548

    Article  Google Scholar 

  55. Mirnov SV, Evtikhin VA (2006) The tests of liquid metals (Ga, Li) as plasma facing components in T-3 M and T-11 M tokamaks. Fusion Eng Des 81:113–119

    Article  Google Scholar 

  56. Song YT, Yao DM, Wu ST (2005) Thermal and mechanical analysis of the EAST plasma facing components. Fusion Eng Des 75–79:499–503

    Article  Google Scholar 

  57. You JH, Bolt H (2003) Thermal stress intensity factor of interfacial cracks of a plasma facing component under high heat flux loading. Fusion Eng Des 65:483–492

    Article  Google Scholar 

  58. Caporali R, Caruso G, Di Pace L (1998) Cryostat pressurization in ITER during an ex-vessel loss of coolant accident sequence. Fusion Eng Des 38:343–351

    Article  Google Scholar 

  59. Yu J, Wu ST, Mao XQ (2007) Cryostat engineering design and manufacturing of the EAST superconducting Tokamak. Fusion Eng Des 82:1929–1936

    Article  Google Scholar 

  60. Wang JQ, Tao YT, Wu ST (2006) Structural design and optimization of cryostat feed-through for ITER magnet. Nucl Tech 29:271–275

    Google Scholar 

  61. Zhang YB, Tao YT, Wu ST (2006) Structural design and analysis of cryostat feed-through for international thermonuclear experimental reactor. Atomic Energy Sci Technol 40:352–355

    Google Scholar 

  62. Wang KS, Zhao H, Tao YT et al (2008) ITER Optimization design and buckling analysis of the straight-line duct for ITER feeder. Nucl Fusion Plasma Phys 28:146–149

    MATH  Google Scholar 

  63. Li CC, Tao YT, Wu ST (2010) Thermal analysis on the ITER TF In-cryostat feeder system. Cryogenics 37:21–25

    Google Scholar 

  64. Wang JQ, Tao YT, Wu ST, Zhang YB (2005) Structural design and analysis of magnet feeder support for ITER. Mach Des Res 21:67–69

    Google Scholar 

  65. Wang JQ, Liu LB, Wu ST, Shao YJ (2009) Structural design and heat transfer calculation of cryostat feed-through auxiliary supports for ITER. Atomic Energy Sci Technol 43:716–719

    Google Scholar 

  66. Ciattaglia E, Ingesson LC, Campbell D (2007) ITER diagnostic port plug engineering design analysis in the EU. Fusion Eng Des 82:1231–1237

    Article  Google Scholar 

  67. Doceul L, Walker C, Ingesson C (2007) CEA engineering studies and integration of the ITER diagnostic port plugs. Fusion Eng Des 82:1216–1223

    Article  Google Scholar 

  68. Dong-man YU, Da-mao YAO, Han XIE (2009) Seismic response analysis for equatorial diagnostic port plug of international thermonuclear experimental reactor. J Cent South Univ Technol 16:112–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntao Song .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, Y., Wu, W., Du, S., Ni, X. (2014). Introduction. In: Tokamak Engineering Mechanics. Mechanical Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39575-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39575-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39574-1

  • Online ISBN: 978-3-642-39575-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics