Skip to main content

Wide-Field, Low-Cost Mapping of Power Ultrasound Fields in Water by Time-Average Moiré Deflectometry

  • Conference paper
Book cover Fringe 2013

Introduction

Characterization of acoustic fields in the power ultrasound range in water is a common problem in diverse application areas like sonochemistry, biomedicine, or industrial cleaning. Different approaches exist for the visualization and mapping of such acoustic fields, being a classical solution the mechanical scanning with pressure sensors (typically, hydrophones) over a grid of points [1]. For high intensity ultrasound, the analysis of bubbles trajectory has also been employed [2]. Alternative optical techniques are the scanning of a pointwise sensor (PIV, LDV) [3, 4], and also full field techniques like deflectometry or schlieren [5], smooth wavefront interferometry [6], holographic interferometry [7], ESPI and similar interferometric speckle techniques [4] or light diffraction tomography [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhou, Y., Zhai, L., Simmons, R., Zhong, P.: Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. J. Acoust. Soc. Am. 120(2), 676–685 (2006)

    Article  Google Scholar 

  2. Gerfault, L., Cachard, C., Gimenez, G.: Mapping of an Acoustic Field by Analysis of Bubbles Trajectory. In: IEEE Ultrasonics Symposium, pp. 1363–1366 (1994)

    Google Scholar 

  3. Longo, R., Vanherzeele, J., Vanlanduit, S., Guillaume, P.: Underwater visualization of multi-input interleaved multisine wave fronts for ultrasonic testing of bones specimens using laser Doppler vibrometry. In: Proceedings of SPIE, vol. 7098, p. 70980T (2008)

    Google Scholar 

  4. Mattsson, R.: Bending and acoustic waves in a water-filled box studied by pulsed TV holography and LDV. Optics and Lasers in Engineering 44, 1146–1157 (2006)

    Article  Google Scholar 

  5. Schneider, B., Shung, K.K.: Quantitative analysis of pulsed ultrasonic beam patterns using a Schlieren system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1181–1186 (1996)

    Article  Google Scholar 

  6. Haran, M.: Visualization and Measurement of Ultrasonic Wavefronts. Proceedings of the IEEE 67(4), 454–466 (1979)

    Article  Google Scholar 

  7. Hisada, S., Suzuki, T., Nakahara, S., Fujita, T.: Visualization and Measurements of Sound Pressure Distribution of Ultrasonic Wave by Stroboscopic Real-Time Holographic Interferometry. Jpn. J. Appl. Phys. 41(5B Pt. 1), 3316–3324 (2002)

    Article  Google Scholar 

  8. Almqvist, M., Holm, A., Jansson, T., Persson, H.W., Lindstrom, K.: High resolution light diffraction tomography: nearfield measurements of 10 MHz continuous wave ultrasound. Ultrasonics 37, 343–353 (1999)

    Article  Google Scholar 

  9. Kafri, O., Glatt, I.: Moire deflectometry: a ray deflection approach to optical testing. Optical Engineering 24, 944–960 (1985)

    Article  Google Scholar 

  10. Keren, E., Kafri, O.: Diffraction effects in moiré deflectometry. J. Opt. Soc. Am. A 2, 111–120 (1985)

    Article  Google Scholar 

  11. Loeber, P., Hiedemann, E.A.: Investigation of Stationary Ultrasonic Waves by Light Refraction. J. Acoust. Soc. Am. 28(1), 27–35 (1956)

    Article  Google Scholar 

  12. Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72(1), 156–160 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontán, L.M., Fernández, J.L., Doval, Á.F., Meniño, J.L., Trillo, C., López-Vázquez, J.C. (2014). Wide-Field, Low-Cost Mapping of Power Ultrasound Fields in Water by Time-Average Moiré Deflectometry. In: Osten, W. (eds) Fringe 2013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36359-7_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36359-7_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36358-0

  • Online ISBN: 978-3-642-36359-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics