Skip to main content

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 3))

Abstract

In this paper a new mathematical model of basic planar imprecise geometric objects (fuzzy line, fuzzy triangle and fuzzy circle) are introduced. Also, basic measurement functions (distance between fuzzy point and fuzzy line, fuzzy point and fuzzy triangle, two fuzzy lines and two fuzzy triangles) as well as spatial operation (linear combination of two fuzzy points) and main spatial relations (coincidence, between and collinear)is proposed. Results obtained with our model can be used in various applications such as image analysis (imprecise feature extraction), GIS (imprecise spatial object modeling), robotics (environment models). Imprecise point objects are modeled as a union of linear combinations of fuzzy points in linear fuzzy space. However, it is proved that fuzzy line could be represented only by two and fuzzy triangle with three fuzzy points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Obradović, D., Konjovic, Z., Pap, E., Ralević, N.M.: The maximal distance between imprecise point objects. Fuzzy Sets and Systems 170(1), 76–94 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: Proceedings of the Fifth Annual Symposium on Computational Geometry, New York, NY, USA, pp. 208–217 (1989)

    Google Scholar 

  3. Löffler, M., van Kreveld, M.: Geometry with Imprecise Lines. In: 24th European Workshop on Computational Geometry (2008)

    Google Scholar 

  4. Löffler, M.: Data Imprecision in Computational Geometry. PhD Thesis. Utrecht University, Utrecht (2009)

    Google Scholar 

  5. Löffler, M., van Kreveld, M.: Largest and Smallest Convex Hulls for Imprecise Points. Algorithmica 56(2), 235–269 (2008)

    Article  Google Scholar 

  6. Yang, K., SamGe, S., He, H.: Robust line detection using two-orthogonal direction image scanning. Computer Vision and Image Understanding 115(8), 1207–1222 (2011)

    Article  Google Scholar 

  7. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic Hough transform. Pattern Recognition 24(4), 303–316 (1991)

    Article  MathSciNet  Google Scholar 

  8. Stephens, R.S.: Probabilistic approach to the Hough transform. Image and Vision Computing 9(1), 66–71 (1991)

    Article  Google Scholar 

  9. Galambos, C., Matas, J., Kittler, J.: Progressive probabilistic Hough transform for line detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (1999)

    Google Scholar 

  10. Matas, J., Galambos, C., Kittler, J.: Robust Detection of Lines Using the Progressive Probabilistic Hough Transform. Computer Vision and Image Understanding 78(1), 119–137 (2000)

    Article  Google Scholar 

  11. Galambos, C., Kittler, J., Matas, J.: Using gradient information to enhance the progressive probabilistic Hough transform. In: Proceedings 15th International Conference on Pattern Recognition, ICPR 2000, Barcelona, Spain, pp. 560–563 (2000)

    Google Scholar 

  12. Schneider, M.: Fuzzy topological predicates, their properties, and their integration into query languages. In: Proceedings of the 9th ACM International Symposium on Advances in Geographic Information Systems, pp. 9–14 (2001)

    Google Scholar 

  13. Rosenfeld, A.: The fuzzy geometry of image subsets. Pattern Recognition Letters 2(5), 311–317 (1984)

    Article  Google Scholar 

  14. Schneider, M.: Design and implementation of finite resolution crisp and fuzzy spatial objects. Data Knowl. Eng. 44, 81–108 (2003)

    Article  MATH  Google Scholar 

  15. Buckley, J.J., Eslami, E.: Fuzzy plane geometry I: Points and lines. Fuzzy Sets and Systems 86(2), 179–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schneider, M.: Spatial Data Types for Database Systems: Finite Resolution Geometry for Geographic Information Systems. Springer (1997)

    Google Scholar 

  17. Obradović, D., Konjović, Z., Pap, E.: Extending PostGIS by imprecise point objects. In: IEEE 8th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, pp. 23–28 (2010)

    Google Scholar 

  18. Verstraete, J., Tré, G., Caluwe, R., Hallez, A.: Field based methods for the modeling of fuzzy spatial data. Fuzzy Modeling with Spatial Information for Geographic Problems, 41–69 (2005)

    Google Scholar 

  19. Dudaand, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  20. Hadžić, O., Pap, E.: Fixed point theory in probabilistic metric spaces. KluwerAcademic Publishers, Dordecht (2001)

    Google Scholar 

  21. Obradović, D., Konjović, Z., Pap, E., Rudas, I.J.: Linear Fuzzy Space Based Road Lane Model and Detection. Knowledge-Based Systems (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Obradović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Obradović, D., Konjović, Z., Pap, E., Rudas, I.J. (2013). Fuzzy Geometry in Linear Fuzzy Space. In: Pap, E. (eds) Intelligent Systems: Models and Applications. Topics in Intelligent Engineering and Informatics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33959-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33959-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33958-5

  • Online ISBN: 978-3-642-33959-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics