Skip to main content

Box-Counting and Multifractal Analysis in Neuronal and Glial Classification

  • Chapter

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 187))

Abstract

Fractal analysis in the neurosciences has advanced over the past twenty years. The fractal dimension, besides its ability to discriminate among different cell types, can work as a reliable parameter in cell classification. A qualitative analysis of the morphology of neurons and glia cell types involves a detailed description of the structure and features of cells, and accordingly, their classification into defined classes and types. This paper outlines how fractal analysis can be used for further quantitative classification of these cell types using box-counting and multifractal analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith Jr., T.G., Lange, G.D., Marks, W.B.: Fractal methods and results in cellular morphology - dimensions, lacunarity and multifractals. J. Neurosci. Meth. 69, 123–136 (1996)

    Article  Google Scholar 

  2. Fernández, E., Jelinek, H.F.: Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24, 309–321 (2001)

    Article  Google Scholar 

  3. Jelinek, H.F., Cornforth, D.J., Roberts, T., Landini, G., Bourke, P., Bossomaier, T.: Image processing of finite size rat retinal ganglion cells using multifractal and local connected fractal analysis. In: Complex Systems Conference, Cairns, Australia (2004)

    Google Scholar 

  4. Nonnenmacher, T.F., Baumann, G., Barth, A., Losa, G.A.: Digital image analysis of self-similar cell profiles. Int. J. Bio-Med. Comp. 37, 131–138 (1994)

    Article  Google Scholar 

  5. Smith Jr., T.G., Marks, W.B., Lange, G.D., Sheriff Jr., W.H., Neale, E.A.: A fractal analysis of cell images. J. Neurosci. Meth. 27, 173–180 (1989)

    Article  Google Scholar 

  6. Jelinek, H.F., Fernández, E.: Neurons and fractals: how reliable and useful are calculations of fractal dimension? J. Neurosci. Meth. 81, 9–18 (1998)

    Article  Google Scholar 

  7. Ristanović, D., Stefanović, B.D., Milošević, N.T., Grgurević, M., Štulić, V.: Fractal and nonfractal analysis of cell images: comparison and application to neuronal dendritic arborization. Biol. Cybern. 87, 278–288 (2002)

    Article  MATH  Google Scholar 

  8. Mandelbrot, B.B.: The fractal geometry of nature. Freeman and Co., New York (1983)

    Google Scholar 

  9. Schroeder, M.: Fractals, chaos, power laws. W.H Freeman and Co., New York (1991)

    MATH  Google Scholar 

  10. Iannaccone, P.M., Khokha, M.: Fractal geometry in biological systems: an analytical approach. CRC Press, New York (1995)

    Google Scholar 

  11. Karperien, A.L., Jelinek, H.F., Buchan, A.M.: Box-counting analysis of microglia form in schizophrenia, Alzheimer’s disease and affective disorder. Fractals 16, 103–107 (2008)

    Article  Google Scholar 

  12. Voss, R.M., Wyatt, J.C.Y.: Multifractals and local connected fractal dimension: Classification of early chinese landscape paintings. In: Crilly, A.J., Earnshaw, R.A., Jones, H. (eds.) Applications of Fractals and Chaos. Springer, Berlin (1991)

    Google Scholar 

  13. Stanley, H.E., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Ivanov, P.C., Peng, C.K.: Statistical physics and physiology: Monofractal and multifractal approaches. Physics A. 270, 309–324 (1999)

    Article  Google Scholar 

  14. Fernández, E., Bolea, J.A., Ortega, G., Louis, E.: Are neurons multifractals? J. Neurosci. Meth. 89, 151–157 (1999)

    Article  Google Scholar 

  15. Block, A., von Bloh, W., Schnellhuber, H.J.: Efficient box-counting determination of generalized fractal dimensions. Phys. Rev. A. 42, 1869–1874 (1990)

    Article  MathSciNet  Google Scholar 

  16. Milošević, N.T., Krstonošić, B., Gudović, R., Ristanović, D.: Fractal analysis of neuronal dendritic branching patterns in the human neostriatum: a revised classification scheme. In: Dumitrache, I. (ed.) Proceedings CSCS-18, vol. 2, pp. 871–876. Editura Politehnica Press, Bucharest (2011)

    Google Scholar 

  17. Ristanović, D., Krstonošić, B., Milošević, N.T., Gudović, R.: Mathematical modeling of transformations of asymmetrically distributed biological data: an application to a quantitative classification of spiny neurons of the human putamen. J. Theor. Biol. 302, 81–88 (2012)

    Article  Google Scholar 

  18. Bayer, T.A., Buslei, R., Havas, L., Falkai, P.: Evidence for activation of microglia in patterns with psychiatric illness. Neuroisci. Lett. 271, 126–128 (1999)

    Article  Google Scholar 

  19. Radewicz, K., Garey, L.J., Gentleman, S.M., Reynolds, R.: Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J. Neuropathol. Exp. Neurol. 59, 137–150 (2000)

    Google Scholar 

  20. Karperien, A., Jelinek, H.F., Milošević, N.T.: Multifractals: a review with an application in neuroscience. In: Dumitrache, I. (ed.) Proceedings CSCS-18, vol. 2, pp. 888–893. Editura Politehnica Press, Bucharest (2011)

    Google Scholar 

  21. Soltys, Z., Ziaja, M., Pawlínski, R., Setkowicz, Z., Janeczko, K.: Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods. J. Neurosci. Res. 63, 90–97 (2001)

    Article  Google Scholar 

  22. Ristanović, D., Milošević, N.T., Stefanović, B.D., Marić, D.L., Rajković, K.: Morphology and classification of large neurons in the adult human dentate nucleus: a qualitative and quantitative analysis of 2D images. Neurosci. Res. 67, 1–7 (2010)

    Article  Google Scholar 

  23. Milošević, N.T., Ristanović, D., Jelinek, H.F., Rajković, K.: Quantitative analysis of dendritic morphology of the alpha and delta retinal ganglion cells in the rat: a cell classification study. J. Theor. Biol. 259, 142–150 (2009)

    Article  Google Scholar 

  24. Jelinek, H.F., Milošević, N.T., Ristanović, D.: The Morphology of Alpha Ganglion Cells in Mammalian Species: a Fractal Analysis Study. J. CEAI 12, 3–9 (2010)

    Google Scholar 

  25. Chhabra, A., Jensen, R.V.: Direct determination of the f(a) singularity spectrum. Am. Phys. Soc. 62, 1327–1330 (1989)

    MathSciNet  Google Scholar 

  26. Vicsek, T.: Fractal Growth Phenomena. World Scientific, Singapore (1992)

    Google Scholar 

  27. Jestczemski, F., Sernetz, M.: Multifractal approach to inhomogeneous fractals. Phys. A. 223, 275–282 (1996)

    Article  Google Scholar 

  28. Berthelsen, C.L., Glazier, J.A., Skolnick, M.H.: Global fractal dimension of human DNA sequences treated as pseudorandom walks. Phys. Rev. A. 45, 8902–8913 (1992)

    Article  Google Scholar 

  29. Braak, H., Braak, E.: Neuronal types in the striatum of man. Cell Tiss. Res. 227, 319–342 (1982)

    Article  Google Scholar 

  30. Graveland, G.A., Williams, R.S., DiFiglia, M.: A Golgi study of the human neostriatum: Neurons and afferent fibers. J. Comp. Neurol. 234, 317–333 (1985)

    Article  Google Scholar 

  31. DiFiglia, M., Pasik, T., Pasik, P.: Ultrastructure of Golgi-impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum. J. Neurocyt. 9, 471–492 (1980)

    Article  Google Scholar 

  32. Dimova, R., Vuillet, J., Seite, R.: Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections. Neurosci. 5, 1581–1596 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert F. Jelinek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jelinek, H.F., Milošević, N.T., Karperien, A., Krstonošić, B. (2013). Box-Counting and Multifractal Analysis in Neuronal and Glial Classification. In: Dumitrache, L. (eds) Advances in Intelligent Control Systems and Computer Science. Advances in Intelligent Systems and Computing, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32548-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32548-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32547-2

  • Online ISBN: 978-3-642-32548-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics