Skip to main content

Theoretical vs. Empirical Classification and Prediction of Congested Traffic States

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2062))

Abstract

Starting from the instability diagram of a traffic flow model, we derive conditions for the occurrence of congested traffic states, their appearance, their spreading in space and time, and the related increase in travel times. We discuss the terminology of traffic phases and give empirical evidence for the existence of a phase diagram of traffic states. In contrast to previously presented phase diagrams, it is shown that “widening synchronized patterns” are possible, if the maximum flow is located inside of a metastable density regime. Moreover, for various kinds of traffic models with different instability diagrams it is discussed, how the related phase diagrams are expected to approximately look like. Apart from this, it is pointed out that combinations of on- and off-ramps create different patterns than a single, isolated on-ramp.

First published in: The European Physical Journal B 69(4), 583–598, DOI: 10.1140/epjb/e2009-00140-5 (2009), © EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2009, reproduction with kind permission of The European Physical Journal (EPJ).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that traffic patterns which appear to be localized, but continue to grow in size, belong to the spatially extended category of traffic states. Therefore, “widening moving clusters” (WMC) are classified as extended congested traffic, while the similarly looking “moving localized clusters” (MLC) are not. According to Fig. 6, however, the phases of both states are located next to each other, so one could summarize both phases by one area representing “moving clusters” (MC).

  2. 2.

    A typical threshold for German freeways would be \({V }_{\mathrm{crit}} \approx 80\) km/h.

  3. 3.

    Which includes “widening moving clusters” (see Fig. 1a and footnote 1).

  4. 4.

    When averaging over spatial and temporal intervals that sufficiently eliminate effects of heterogeneity and pedal control in real vehicle traffic.

  5. 5.

    When the freeway is busy, it may happen that these two flows are different and that a queue of vehicles forms on the on-ramp. Of course, it is an interesting question to determine how the entering ramp flow depends on the freeway flow, but this is not the focus of attention here, as this formula is not required for the following considerations.

  6. 6.

    That is, “moving localized clusters” (MLC) and “widening moving clusters” (WMC), see footnote 1 and Sect. 4.2.

  7. 7.

    Since the model parameters characterize the prevailing driving style as well as external conditions such as weather conditions and speed limits, the separation lines (“phase boundaries”) and even the existence of certain traffic patterns are subject to these factors, see Sect. 7.

  8. 8.

    For example, in most models, the outflow Q out downstream of an on-ramp bottleneck decreases with the bottleneck strength and increases with the length of the on-ramp [53, 55].

  9. 9.

    The IDM parameters for plots (a) and (b) are given by v 0 = 128 km/h, T = 1 s, s 0 = 2 m, s 1 = 10 m, a = 0. 8 m/s2, and b = 1. 3 m/s2. To generate plots (c) and (d), the acceleration parameter was increased to a = 1. 3 m/s2, while the other parameters were left unchanged.

  10. 10.

    And the condition \({Q}_{\mathrm{up}} + \Delta Q < {Q}_{\mathrm{out}}\) for the gradual dissolution of the resulting congestion pattern is harder to fulfil than the condition \({Q}_{\mathrm{up}} + \Delta Q < {Q}_{\mathrm{max}}\) implied by (4).

  11. 11.

    In this connection, it is interesting to remember Kerner’s “dissolving general pattern” (DGP), which is predicted under similar flow conditions.

  12. 12.

    One may also analyze the situation with the shock wave equation: Spatially expanding congested traffic results, if the speed of the downstream shock front of the congested area (which is usually zero) minus the speed of the upstream shock front (which is usually negative) gives a positive value.

  13. 13.

    Since pinned localized clusters rarely constitute a maximum perturbation, they can also occur at higher densities and flows, as long as \({Q}_{\mathrm{up}} < {Q}_{\mathrm{c2}}\). Therefore, MLC and PLC states can coexist in the range \({Q}_{\mathrm{c1}} < {Q}_{\mathrm{up}} < {Q}_{\mathrm{c2}}\). For most traffic models and bottleneck types, congestion patterns with \({Q}_{\mathrm{tot}} \approx {Q}_{\mathrm{c1}}\) do not exist, since localized congestion patterns do not correspond to maximum perturbations. The actual lower boundary \(\tilde{{Q}}_{\mathrm{c1}}\) for the overall traffic volume \({Q}_{\mathrm{tot}}\) that generates congestion is somewhat higher than Q c1, but usually lower than \({Q}_{\mathrm{c2}}\). Considering the metastability of traffic flow in this range and the decay of the critical perturbation amplitude from ρc1 to ρc2 [10], this behavior is expected. However, for some models and parameters, one may even have \(\tilde{{Q}}_{\mathrm{c1}} > {Q}_{\mathrm{out}}\). In such cases, PLC states would not be possible under any circumstances.

  14. 14.

    Oscillatory congestion patterns upstream of off-ramps are further promoted by a behavioral feedback, since drivers may decide to leave the freeway in response to downstream traffic congestion.

  15. 15.

    The existence of “widening moving clusters”, see Sect. 4.2 and Fig. 1a, supports this view as well.

  16. 16.

    An example would be the IDM with the parameter choice s 1 = 0.

References

  1. P.F. Arndt, Phys. Rev. Lett. 84, 814 (2000)

    Article  Google Scholar 

  2. M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, Phys. Rev. E 58, 5429 (1998)

    Article  Google Scholar 

  3. R. Barlovic, T. Huisinga, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 66(4), 046113 (2002)

    Article  Google Scholar 

  4. E. Brockfeld, R.D. Kühne, A. Skabardonis, P. Wagner, Transp. Res. Rec. 1852, 124 (2003)

    Article  Google Scholar 

  5. E. Brockfeld, R.D. Kühne, P. Wagner, Transp. Res. Rec. 1876, 62 (2004)

    Article  Google Scholar 

  6. M.J. Cassidy, R.L. Bertini, Transp. Res. B Methodol. 33, 25 (1999)

    Article  Google Scholar 

  7. M. Evans, Y. Kafri, H. Koduvely, D. Mukamel, Phys. Rev. Lett. 80, 425 (1998)

    Article  Google Scholar 

  8. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  Google Scholar 

  9. D. Helbing, J. Phys. A 36(46), L593 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Helbing, M. Moussaid, Eur. Phys. J. B 69, 571–581 (2009)

    Article  Google Scholar 

  11. D. Helbing, B. Tilch, Phys. Rev. E 58, 133 (1998)

    Article  Google Scholar 

  12. D. Helbing, B. Tilch, Eur. Phys. J. B 68, 577–586 (2009)

    Article  MATH  Google Scholar 

  13. D. Helbing, A. Hennecke, M. Treiber, Phys. Rev. Lett. 82, 4360 (1999)

    Article  Google Scholar 

  14. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math. Comput. Model. 35, 517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Jiang, Q. Wu, B. Wang, Phys. Rev. E 66(3), 36104 (2002)

    Article  Google Scholar 

  16. B.S. Kerner, in Proceedings of the Third International Symposium on Highway Capacity, vol. 2, ed. by R. Rysgaard (Road Directorate, Denmark, 1998), pp. 621–641

    Google Scholar 

  17. B. Kerner, Phys. Rev. Lett. 81(17), 3797 (1998)

    Article  MATH  Google Scholar 

  18. B.S. Kerner, Transp. Res. Rec. 1710, 136 (2000)

    Article  Google Scholar 

  19. B. Kerner, Phys. Rev. E 65, 046138 (2002)

    Article  Google Scholar 

  20. B.S. Kerner, The Physics of Traffic (Springer, Heidelberg, 2004)

    Book  Google Scholar 

  21. B.S. Kerner, Phys. A 399, 379 (2004)

    MathSciNet  Google Scholar 

  22. B. Kerner, S. Klenov, J. Phys. A 35, L31 (2002)

    MATH  Google Scholar 

  23. B. Kerner, S. Klenov, J. Phys. A Math. Gen. 35, L31 (2002)

    Article  MATH  Google Scholar 

  24. B. Kerner, P. Konhäuser, Phys. Rev. E 48(4), 2335 (1993)

    Article  Google Scholar 

  25. B. Kerner, H. Rehborn, Phys. Rev. E 53, R1297 (1996)

    Article  Google Scholar 

  26. B. Kerner, H. Rehborn, Phys. Rev. E 53, R4275 (1996)

    Article  Google Scholar 

  27. B. Kerner, H. Rehborn, Phys. Rev. Lett. 79, 4030 (1997)

    Article  Google Scholar 

  28. B. Kerner, S. Klenov, D. Wolf, J. Phys. A 35(47), 9971 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Kesting, M. Treiber, Transp. Res. Rec. 2088, 148 (2008)

    Article  Google Scholar 

  30. A. Kesting, M. Treiber, D. Helbing, Transp. Res. Rec. 1999, 86 (2007)

    Article  Google Scholar 

  31. A. Kesting, M. Treiber, M. Schönhof, D. Helbing, Transp. Res. C Emerg. Tech. 16(6), 668 (2008)

    Article  Google Scholar 

  32. J. Krug, Phys. Rev. Lett. 67, 1882 (1991)

    Article  MathSciNet  Google Scholar 

  33. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  Google Scholar 

  34. H. Lee, H. Lee, D. Kim, Phys. Rev. Lett. 81, 1130 (1998)

    Article  Google Scholar 

  35. H.Y. Lee, H.W. Lee, D. Kim, Phys. Rev. E 59, 5101 (1999)

    Article  Google Scholar 

  36. H. Lee, H. Lee, D. Kim, Phys. Rev. E 62, 4737 (2000)

    Article  Google Scholar 

  37. M. Lighthill, G. Whitham, Proc. R. Soc. Lond. A 229, 317 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Lübeck, M. Schreckenberg, K.D. Usadel, Phys. Rev. E 57, 1171 (1998)

    Article  Google Scholar 

  39. K. Nagel, M. Schreckenberg, J. Phys. I Fr. 2, 2221 (1992)

    Article  Google Scholar 

  40. K. Nishinari, M. Treiber, D. Helbing, Phys. Rev. E 68, 067101 (2003)

    Article  Google Scholar 

  41. S. Ossen, S.P. Hoogendoorn, Transp. Res. Rec. 1934, 13 (2005)

    Article  Google Scholar 

  42. S. Ossen, S.P. Hoogendoorn, B.G. Gorte, Transp. Res. Rec. 1965, 121 (2007)

    Article  Google Scholar 

  43. V. Popkov, L. Santen, A. Schadschneider, G.M. Schütz, J. Phys. A Math. Gen. 34, L45 (2001)

    Article  MATH  Google Scholar 

  44. M. Schönhof, D. Helbing, Transp. Sci. 41, 1 (2007)

    Article  Google Scholar 

  45. M. Schönhof, Ph.D. thesis, Technische Universität Dresden (Unpublished)

    Google Scholar 

  46. G. Schütz, E. Domany, J. Stat. Phys. 72, 277 (1993)

    MATH  Google Scholar 

  47. F. Siebel, W. Mauser, Phys. Rev. E 73(6), 66108 (2006)

    Article  MathSciNet  Google Scholar 

  48. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki, S. Yukawa, New J. Phys. 10, 033001 (2008)

    Article  Google Scholar 

  49. M. Treiber, D. Helbing, J. Phys. A 32(1), L17 (1999)

    Article  Google Scholar 

  50. M. Treiber, D. Helbing, Coop. Transp. Dyn. 1, 3.1 (2002). Internet Journal, see http://www.TrafficForum.org/journal

  51. M. Treiber, D. Helbing, Eur. Phys. J. B 68, 607–618 (2009)

    Article  Google Scholar 

  52. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 59, 239 (1999)

    Article  Google Scholar 

  53. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 62, 1805 (2000)

    Article  Google Scholar 

  54. M. Treiber, A. Kesting, D. Helbing, Phys. A 360, 71 (2006)

    Article  Google Scholar 

  55. M. Treiber, A. Kesting, D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transport. Res. B Methodological 44(8–9), 983–1000 (2010)

    Article  Google Scholar 

  56. J. Treiterer, J. Myers, in Proceedings of the 6th International Symposium on Transportation and Traffic Theory, ed. by D. Buckley (Elsevier, New York, 1974), p. 13

    Google Scholar 

  57. G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974)

    MATH  Google Scholar 

  58. B. Zielke, R. Bertini, M. Treiber, Empirical Measurement of Freeway Oscillation Characteristics: An International Comparison. Transportation Research Board Annual Meeting, Paper #08-0300, 2008

    Google Scholar 

Download references

Acknowledgements

DH and MT are grateful for the inspiring discussions with the participants of the Workshop on “Multiscale Problems and Models in Traffic Flow” organized by Michel Rascle and Christian Schmeiser at the Wolfgang Pauli Institute in Vienna from May 5–9, 2008, with partial support by the CNRS. Furthermore, the authors would like to thank for financial support by the Volkswagen AG within the BMBF research initiative INVENT and the Hessisches Landesamt für Straßen und Verkehrswesen for providing the freeway data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Helbing .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helbing, D., Treiber, M., Kesting, A., Schönhof, M. (2013). Theoretical vs. Empirical Classification and Prediction of Congested Traffic States. In: Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics(), vol 2062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32160-3_5

Download citation

Publish with us

Policies and ethics