Skip to main content

Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication

  • Chapter
  • First Online:
Characterization and Development of Biosystems and Biomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 29))

Abstract

Tissue engineering scaffold is a 3D construction that acts as a template for tissue regeneration. The scaffold should have some basic requirements including biocompatibility, suitable mechanical properties, appropriate surface chemistry, high porosity and interconnectivity. Although several conventional techniques such as solvent casting and gas forming are utilized in scaffold fabrication, these processes show poor interconnectivity and uncontrollable porosity of the produced scaffolds. However, Rapid Prototyping (RP) techniques which are a group of advanced manufacturing processes can produce custom made objects directly from computer data such as Computer Aided Design (CAD), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data. Using RP fabrication techniques, constructions with controllable and complex internal architecture with appropriate mechanical properties can be achieved.The present chapter intends to provide an overview of the current state of the art in the area of tissue engineering scaffolds fabrication, using advanced RP processes. The present work highlights also the existing limitations in addition to future prospects in scaffold fabrication via RP techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moroni, L., De Wing, J.R., Van Blitterswijk, C.A.: Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polymer. Edn. 19, 543–573 (2008)

    Article  CAS  Google Scholar 

  2. Agrawal, C.M., Ray, R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55, 141–150 (2001)

    Article  CAS  Google Scholar 

  3. Das, S., Hollister, S.J.: Tissue engineering scaffolds. In: Buschow, K.H., Cahn, R.W., Flemings, M.C. (eds.) Encyclopedia of Materials: Science and Technology, 2nd edn. Elsevier, Oxford (2003)

    Google Scholar 

  4. Lim, T.C., Bang, C.P., Chian, K.S., Leong, K.F.: Development of cryogenic prototyping for tissue engineering. Virtual. phys. prototyping 3, 25–31 (2008)

    Article  Google Scholar 

  5. Bártolo, P.J., Almeida, H.A., Rezende, R.A., Laoui, T., Bidanda, B.: Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda, B., Bártolo, P.J. (eds.) Virtual Prototyping and Bio Manufacturing in Medical Applications, 1st edn. Springer, US (2008)

    Chapter  Google Scholar 

  6. Woodfield, T.B., Malda, J., De Wijn, J., Péters, F., Riesle, J., van Blitterswijk, C.A.: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25, 4149–4164 (2004)

    Article  CAS  Google Scholar 

  7. Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., Mülhaupy, R.: Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37, 3107–3116 (2002)

    Article  CAS  Google Scholar 

  8. Wang, F., Shor, L., Darling, A., Khalil, S., Sun, W., Güçeri, S., Lau, A.: Precision extruding deposition and characterization of cellular poly-1-caprolactone tissue scaffolds. Rapid Prototyping J. 10, 42–49 (2004)

    Article  Google Scholar 

  9. Espalin, D., Arcaute, K., Rodriguez, D., Medina, F.: Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping J. 16, 164–173 (2010)

    Article  Google Scholar 

  10. Yen, H.J., Tseng, C.S., Hsu, S.H., Tsai, C.L.: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed. Microdevices 11, 615–624 (2009)

    Article  CAS  Google Scholar 

  11. Tellis, B.C., Szivek, J.A., Bliss, C.L., Margolis, D.S., Vaidyanathan, R.K., Calvert, P.: Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng., C 28, 171–178 (2008)

    Article  CAS  Google Scholar 

  12. Geffre, C.P., Margolis, D.S., Ruth, J.T., DeYoung, D.W., Tellis, B.C., Szivek, J.A.: A novel biomimetic polymer scaffold design enhances bone ingrowth. J. Biomed. Mater. Res., Part A 91A, 795–805 (2009)

    Article  CAS  Google Scholar 

  13. Li, J.P., De Wijn, J.R., van Blitterswijk, C.A., de Groot, K.: The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4 V for orthopedic implants. J. Biomed. Mater. Res., Part A 92A, 33–42 (2010)

    Article  CAS  Google Scholar 

  14. Woodfield, T.B., Guggenheim, M., von Rechenberg, B., Riesle, J., van Blitterswijk, C.A., Wedler, V.: Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 42, 485–497 (2009)

    Article  CAS  Google Scholar 

  15. Shor, L., Güçeri, S., Wen, X., Gandhi, M., Sun, W.: Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28, 2591–5297 (2007)

    Article  CAS  Google Scholar 

  16. Yildirim, E.D., Besunder, R., Guceri, S., Allen, F., Sun, W.: Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function. Virtual Phys. Prototyping 3, 199–207 (2008)

    Article  Google Scholar 

  17. Xiong, Z., Yan, Y., Wang, S., Zhang, R., Zhang, C.: Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Mater. 46, 771–776 (2002)

    Article  CAS  Google Scholar 

  18. Li, J., Zhang, L., Lv, S., Li, S., Wang, N., Zhang, Z.: Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model. J. Biotechnol. 151, 87–93 (2011)

    Article  CAS  Google Scholar 

  19. Mäkitie, A.A., Yan, Y., Wang, X., Xiong, Z., Paloheimo, K.S., Tuomi, J., Paloheimo, M., Salo, J., Renkonen, R.: In Vitro evaluation of a 3D PLGA–TCP composite scaffold in an experimental bioreactor. J. Bioact. Compatible Polym. 24, 75–83 (2009)

    Article  Google Scholar 

  20. Chua, C.K., Leong, K.F., Tan, K.H.: Specialized fabrication processes: Rapid prototyping. In: Narayan, R. (ed.) Biomedical Materials. Springer Science + Business Media, New York (2009)

    Chapter  Google Scholar 

  21. Park, S.A., Lee, S.H., Kim, W.D.: Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst. Eng. 34, 505–513 (2010)

    Article  CAS  Google Scholar 

  22. Sobral, J.M., Caridade, S.G., Sousa, R.A., Mano, J.F., Reis, R.L.: Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7, 1009–1018 (2011)

    Article  CAS  Google Scholar 

  23. Park, S., Kim, G.H., Jeon, Y.C., Koh, Y.H., Kim, W.D.: 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20, 229–234 (2009)

    Article  CAS  Google Scholar 

  24. Yilgor, P., Sousa, R.A., Reis, R.L., Hasirci, N., Hasirci, V.: 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromol. Symp. 269, 92–99 (2008)

    Article  CAS  Google Scholar 

  25. Son, J.G., Kim, G.H.: Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces. J. Biomater. Sci. 20, 2089–2101 (2009)

    Article  CAS  Google Scholar 

  26. Kim, G.H., Son, J.G.: 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter. Appl. Phys. A 94, 781–785 (2009)

    Article  CAS  Google Scholar 

  27. Jun-Hee, L., Su-A, P., KoEun, P., Jae-Hyun, K., Kyung-Shik, K., Jihye, L., WanDoo, K.: Fabrication and characterization of 3D scaffold using 3D plotting system. Chinese Sci Bull 55, 94–98 (2010)

    Article  CAS  Google Scholar 

  28. Daoud, J.T., Petropavlovskaia, M.S., Patapas, J.M., Degrandpré, C.E., DiRaddo, R.W., Rosenberg, L., Tabrizian, M.: Long-term in vitro hum an pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 32, 1536–1542 (2011)

    Article  CAS  Google Scholar 

  29. Ye, L., Zeng, X., Li, H., Ai, Y.: Fabrication and biocompatibility of nano non-stoichiometric apatite and poly(e-caprolactone) composite scaffold by using prototyping controlled process. J. Mater. Sci. Mater. Med. 21, 753–760 (2010)

    Article  CAS  Google Scholar 

  30. Oliveira, A.L., Costa, S.A., Sousa, R.A., Reis, R.L.: Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffol ds: Effect of static and dynamic coating conditions. Acta Biomater. 5, 1626–1638 (2009)

    Article  CAS  Google Scholar 

  31. Haberstroh, K., Ritter, K., Kuschnierz, J., Bormann, K.H., Kaps, C., Carvalho, C., Mülhaupt, R., Sittinger, M., Gellrich, N.C.: Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 520–530 (2010)

    Article  CAS  Google Scholar 

  32. Hoelzle, D.J., Alleyne, A.G., Johnson, A.J.: Micro-robotic deposition guidelines by a design of experiments approach to maximize fabrication reliability for the bone scaffold application. Acta Biomater. 4, 897–912 (2008)

    Article  CAS  Google Scholar 

  33. Miranda, P., Saiz, E., Gryn, K., Tomsia, A.P.: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2, 457–466 (2006)

    Article  Google Scholar 

  34. Martinez-Vazquez, F.J., Perera, F.H., Miranda, P., Pajares, A., Guiberteau, F.: Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 6, 4361–4368 (2010)

    Article  CAS  Google Scholar 

  35. Miranda, P., Pajares, A., Guiberteau, F.: Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater. 4, 1715–1724 (2008)

    Article  CAS  Google Scholar 

  36. Kim, J.Y., Cho, D.W.: The optimization of hybrid scaffold fabrication process in precision deposition system using design of experiments. Microsyst. Technol. 15, 843–851 (2009)

    Article  CAS  Google Scholar 

  37. Kim, J.Y., Cho, D.W.: Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron. Eng. 86, 1447–1450 (2009)

    Article  CAS  Google Scholar 

  38. Lam, C.X., Olkowski, R., Swieszkowski, W., Tan, K.C., Gibson, I., Hutmacher, D.W.: Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual Phys. Prototyping 3, 193–197 (2008)

    Article  Google Scholar 

  39. Arafat, M.T., Lam, C.X., Ekaputra, A.K., Wong, S.Y., Li, X., Gibson, I.: Biomimetic composite coating on rapid prototyped scaffolds for bonetissue engineering. Acta Biomater. 7, 809–820 (2011)

    Article  CAS  Google Scholar 

  40. Domingos, M., Dinucci, D., Cometa, S., Alderighi, M., Bartolo, P.J., Chiellini, F.: Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int. J. Biomater. 2009, 1–9 (2009)

    Article  CAS  Google Scholar 

  41. Centola, M., Rainer, A., Spadaccio, C., De Porcellinis, S., Genovese, J.A., Trombetta, M.: Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2, 1–11 (2010)

    Article  CAS  Google Scholar 

  42. Owida, A., Chen, R., Patel, S., Morsi, Y., Mo, X.: Artery vessel fabrication using the combined fused deposition modeling and electrospinning techniques. Rapid Prototyping J. 17, 37–44 (2011)

    Article  Google Scholar 

  43. Kim, G.H., Son, J.G., Park, S., Kim, W.D.: Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol. Rapid Commun. 29, 1577–1581 (2008)

    Article  CAS  Google Scholar 

  44. Lee, H., Yeo, M., Ahn, S.H., Kang, D.O., Jang, C.H., Lee, H., Park, G.M., Kim, G.H.: Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. J. Biomed. Mater. Res. Part B: Appl. Biomater. 97B, 263–270 (2011)

    Article  CAS  Google Scholar 

  45. Moroni, L., Schotel, R., Hamann, D., de Wijn, J.R., van Blitterswijk, C.A.: 3D fiber deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 18, 53–63 (2008)

    Article  CAS  Google Scholar 

  46. Lim, T.C., Bang, C.P., Chian, K.S., Leong, K.F.: Development of cryogenic prototyping for tissue engineering. Virtual Phys Prototyping 3, 25–31 (2008)

    Article  Google Scholar 

  47. Pham, C.B., Leong, K.F., Lim, T.C., Chian, K.S.: Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyping J. 14, 246–253 (2008)

    Article  Google Scholar 

  48. Lu, L., Zhang, Q., Wootton, D., Lelkes, P.I., Zhou, J.: A novel sucrose porogen-base d solid freeform fabrication system for bone scaffold manufacturing. Rapid Prototyping J. 16, 365–367 (2010)

    Article  Google Scholar 

  49. Heo, S.J., Kim, S.E., Wei, J., Hyun, Y.T., Yun, H.S., Kim, D.H., Shin, J.W., Shin, J.-W.: Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. J. Biomed. Mater. Res. Part A 89A, 108–116 (2009)

    CAS  Google Scholar 

  50. Salgado, A.J., Coutinho, O.P., Reis, R.L.: Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4, 743–765 (2004)

    Article  CAS  Google Scholar 

  51. Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31, 850–856 (2010)

    Article  CAS  Google Scholar 

  52. Woesz, A.: Rapid prototyping to produce porous scaffolds with controlled architecture for possible use in bone tissue engineering. In: Bidanda, B., Bártolo, P.J. (eds.) Virtual Prototyping and Bio Manufacturing in Medical Applications. Springer, US (2008)

    Google Scholar 

  53. Detsch, R., Schaefer, S., Deisinger, U., Ziegler, G., Seitz, H., Leukers, B.: In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl. 00, 1–22 (2010)

    Google Scholar 

  54. Shanjani, Y., De Croos, J.N., Pilliar, R.M., Kandel, R.A., Toyserkani, E.: Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 510–519 (2010)

    Article  CAS  Google Scholar 

  55. Klammert, U., Vorndran, E., Reuther, T., Müller, F.A., Zorn, K., Gbureck, U.: Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21, 2947–2953 (2010)

    Article  CAS  Google Scholar 

  56. Ge, Z., Wang, L., Heng, B.C., Tian, X.F., Lu, K., Fan, V.T., Yeo, J.F., Cao, T., Tan, E.: Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J. Biomater. Appl. 23, 533–547 (2009)

    Article  CAS  Google Scholar 

  57. Warnke, P.H., Seitz, H., Warnke, F., Becker, S.T., Sivananthan, S., Sherry, E., Liu, Q., Wiltfang, J., Douglas, T.: Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 212–217 (2010)

    CAS  Google Scholar 

  58. Becker, S.T., Bolte, H., Krapf, O., Seitz, H., Douglas, T., Sivananthan, S., Wiltfang, J., Sherry, E., Warnke, P.H.: Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol. 45, e181–e188 (2009)

    Article  Google Scholar 

  59. Klammert, U., Reuther, T., Jahn, C., Kraski, B., Kübler, A.C., Gbureck, U.: Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 5, 727–734 (2009)

    Article  CAS  Google Scholar 

  60. Lowmunkong, R., Sohmura, T., Suzuki, Y., Matsuya, S., Ishikawa, K.: Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method. J. Biomed. Mater. Res. Part B: Appl. Biomater. 90B, 531–539 (2009)

    Article  CAS  Google Scholar 

  61. Gbureck, U., Hölzel, T., Biermann, I., Barralet, J.E., Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci. Mater. Med. 19, 1559–1563 (2008)

    Article  CAS  Google Scholar 

  62. Wiria, F.E., Shyan, J.Y., Lim, P.N., Wen, F.G., Yeo, J.F., Cao, T.: Printing of titanium implant prototype. Mater. Des. 31, S101–S105 (2010)

    Article  CAS  Google Scholar 

  63. Bártolo, P.J., Chua, C.K., Almeida, H.A., Chou, S.M., Lim, A.S.: Biomanufacturing for tissue engineering: Present and future trends. Virtual Phys. Prototyping 4, 203–216 (2009)

    Article  Google Scholar 

  64. Park, C.H., Rios, H.F., Jin, Q., Bland, M.E., Flanagan, C.L., Hollister, S.J., Giannobile, W.V.: Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 31, 5945–5952 (2010)

    Article  CAS  Google Scholar 

  65. Safari, A., Danforth, S.C., Allahverdi, M., Venkataraman, N.: Rapid Prototyping. In: Buschow, K.H., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, 2nd edn. Elsevier, Oxford (2001)

    Google Scholar 

  66. Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T.: Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 7, 530–537 (2011)

    Article  CAS  Google Scholar 

  67. Yeong, W.Y., Sudarmadji, N., Yu, H.Y., Chua, C.K., Leong, K.F., Venkatraman, S.S., Boey, Y.C., Tan, L.P.: Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6, 2028–2034 (2010)

    Article  CAS  Google Scholar 

  68. Eshraghi, S., Das, S.: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6, 2467–2476 (2010)

    Article  CAS  Google Scholar 

  69. Lohfeld, S., Tyndyk, M.A., Cahill, S., Flaherty, N., Barron, V., McHugh, P.E.: A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 3, 138–147 (2010)

    Article  Google Scholar 

  70. Eosoly, S., Brabazon, D., Lohfeld, S., Looney, L.: Selective laser sintering of hydroxyapatite/poly-ε- caprolactone scaffolds. Acta Biomater. 6, 2511–2517 (2010)

    Article  CAS  Google Scholar 

  71. Salmoria, G.V., Klauss, P., Paggi, R.A., Kanis, L.A., Lago, A.: Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym. Test. 28, 648–652 (2009)

    Article  CAS  Google Scholar 

  72. Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L.: Synthesis of Ca–P nanoparticles and fabrication of Ca–P/PHBV nanocomposite microspheres for bone tissue engineering applications. Appl. Surf. Sci. 255, 529–533 (2008)

    Article  CAS  Google Scholar 

  73. Duan, B., Wang, M.: Customized Ca – P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7, S615–S629 (2010)

    Article  CAS  Google Scholar 

  74. Duan, B., Wang, M.: Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Polym. Degrad. Stab. 95, 1655–1664 (2010)

    Article  CAS  Google Scholar 

  75. Duan, B., Wang, M., Li, Z.Y., Lu, W.W.: Bone morphogenetic protein incorporated nanocomposite scaffolds and induction of osteogenic differentiation of mesenchymal stem cells. In: Proceedings of the Tissue Engineering and Regenerative Medicine International Society—EU Meeting, Galway, Ireland

    Google Scholar 

  76. Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L., Li, Z.Y., Lu, W.W.: Three dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6, 4495–4505 (2010)

    Article  CAS  Google Scholar 

  77. Duan, B., Cheung, W.L., Wang, M.: Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3, 015001–015013 (2011)

    Article  CAS  Google Scholar 

  78. Duan, B., Wang, M., Li, Z.Y., Chan, W.C., Lu, W.W.: Sur face modi fi cation of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatine and its in vitro biological evaluation. Front. Mater. Sci. 5, 57–68 (2011)

    Article  Google Scholar 

  79. Zhou, W.Y., Lee, S.H., Wang, M., Cheung, W.L., Ip, W.Y.: Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J. Mater. Sci. Mater. Med. 19, 2535–2540 (2008)

    Article  CAS  Google Scholar 

  80. Liu-lan, L., Ying-ying, S., Jia-feng, Z., Ming-lun, F.: Microstructure and mechanical properties analysis of β-tricalcium phosphate/carbon nanotubes scaffold based on rapid prototyping. J. Shanghai Univ.(Engl. Ed.) 13, 349–351 (2009)

    Article  CAS  Google Scholar 

  81. Bibb, R.: Medical Modelling: The Application of Advanced Design and Development Techniques in Medicine. Woodhead Publishing Limited, Cambridge, England (2006)

    Google Scholar 

  82. Seck, T.M., Melchels, F.P., Feijen, J., Grijpma, D.W.: Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D, L -lactide)-based resins. J. Controlled Release 148, 34–41 (2010)

    Article  CAS  Google Scholar 

  83. Melchels, F.P., Bertoldi, K., Gabbrielli, R., Velders, A.H., Feijen, J., Grijpma, D.W.: Mathematically defined tissue engineering scaffold architectures prepared by stereolitho- graphy. Biomaterials 31, 6909–6916 (2010)

    Article  CAS  Google Scholar 

  84. Melchels, F.P., Barradas, A.M., Van Blitterswijk, C.A., de Boer, J., Feijen, J., Grijpma, D.W.: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6, 4208–4217 (2010)

    Article  CAS  Google Scholar 

  85. Melchels, F.P., Feijen, J., Grijpma, D.W.: A poly(D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30, 3801–3809 (2009)

    Article  CAS  Google Scholar 

  86. Arcaute, K., Mann, B., Wicker, R.: Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6, 1047–1054 (2010)

    Article  CAS  Google Scholar 

  87. Lee, J.W., Ahn, G., Kim, J.Y., Cho, D.-W.: Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J. Mater. Sci. Mater. Med. 21, 3195–3205 (2010)

    Article  CAS  Google Scholar 

  88. Lee, J.W., Jung, J.H., Kim, D.S., Lim, G., Cho, D.-W.: Estimation of cell proliferation by various peptide coating at the PPF/DEF 3D scaffold. Microelectron. Eng. 86, 1451–1454 (2009)

    Article  CAS  Google Scholar 

  89. Lee, J.W., Lan, P.X., Kim, B., Lim, G., Cho, D.-W.: Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J. Biomed. Mater. Res. Part B: Appl. Biomater. 87B, 1–9 (2008)

    Article  CAS  Google Scholar 

  90. Lee, J.W., Ahn, G., Kim, D.S., Cho, D.-W.: Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron. Eng. 86, 1465–1467 (2009)

    Article  CAS  Google Scholar 

  91. Choi, J.W., Wicker, R., Lee, S.-H., Choi, K.-H., Ha, C.-S., Chung, I.: Fabrication of 3D biocompatible/biodegradable micro-scaf folds using dynamic mask projection microstereolithography. J. Mater. Process. Technol. 209, 5494–5503 (2009)

    Article  CAS  Google Scholar 

  92. Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B.: Microstructure and mechanical behavior of Ti–6Al–4 V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behavior Biomed. Mater. 2, 20–32 (2009)

    Article  CAS  Google Scholar 

  93. Dinda, G.P., Song, L., Mazumder, J.: Fabrication of Ti-6Al-4 V scaffolds by direct metal deposition. Metall. Mater. Trans. A 39A, 2914–2922 (2008)

    Article  CAS  Google Scholar 

  94. Li, X., Wang, C., Zhang, W., Li, Y.: Fabrication and compressive properties of Ti6Al4 V implant with honeycomb-like structure for biomedical applications. Rapid Prototyping J. 16, 44–49 (2010)

    Article  Google Scholar 

  95. Li, X., Wang, C., Zhang, W., Li, Y.: Properties of a porous Ti–6Al–4 V implant with a low stiffness for biomedical application. Proc. IMechE Part H: J. Engineering in Medicine 223, 173–178 (2009)

    Article  CAS  Google Scholar 

  96. Li, X., Wang, C., Zhang, W., Li, Y.: Fabrication and characterization of porous Ti6Al4 V parts for biomedical applications using electron beam melting process. Mater. Lett. 63, 403–405 (2009)

    Article  CAS  Google Scholar 

  97. Parthasarathy, J., Starly, B., Raman, S., Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4 V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3, 249–259 (2010)

    Article  Google Scholar 

  98. Parthasarathy, J., Starly, B., Raman, S.: A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manufact. Process. 13, 160–170 (2011)

    Article  Google Scholar 

  99. Heinl, P., Muüller, L., Koürner, C., Singer, R.F., Muüller, F.A.: Cellular Ti–6Al–4 V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536–1544 (2008)

    Article  CAS  Google Scholar 

  100. Haslauer, C.M., Springer, J.C., Harrysson, O.L., Loboa, E.G., Monteiro-Riviere, N.A., Marcellin-Little, D.J.: In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Med. Eng. Phys. 32, 645–652 (2010)

    Article  Google Scholar 

  101. Ponader, S., Von Wilmowsky, C., Widenmayer, M., Lutz, R., Heinl, P., Körner, C., Singer, R.F., Nkenke, E., Neukam, F.W., Schlegel, K.A.: In vivo performance of selective electron beam-melted Ti-6Al-4 V structures. J. Biomed. Mater. Res., Part A 92A, 56–62 (2010)

    Article  CAS  Google Scholar 

  102. Harrysson, O.L., Cansizoglu, O., Marcellin-Little, D.J., Cormier, D.R., West, H.A.: Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater. Sci. Eng., C 28, 366–373 (2008)

    Article  CAS  Google Scholar 

  103. Lindner, M., Hoeges, S., Meiners, W., Wissenbach, K., Smeets, R., Telle, R., Poprawe, R., Fischer, H.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. J. Biomed. Mater. Res., Part A 97A, 466–471 (2011)

    Article  CAS  Google Scholar 

  104. Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., Huang, W.: Development of highly porous titanium scaffolds by selective laser melting. Mater. Lett. 64, 674–676 (2010)

    Article  CAS  Google Scholar 

  105. Alvarez, K., Nakajima, H.: Metallic scaffolds for bone regeneration. Materials 2, 790–832 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the cultural affairs and Missions Sector, Ministry of Higher Education—Egypt and Egypt-Japan University of Science and Technology (E-JUST) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama A. M. Abdelaal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdelaal, O.A.M., Darwish, S.M.H. (2013). Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Characterization and Development of Biosystems and Biomaterials. Advanced Structured Materials, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31470-4_3

Download citation

Publish with us

Policies and ethics