Skip to main content

A Simple Framework for the Generalized Nearest Neighbor Problem

  • Conference paper
Book cover Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

Abstract

The problem of finding a nearest neighbor from a set of points in ℝd to a complex query object has attracted considerable attention due to various applications in computational geometry, bio-informatics, information retrieval, etc. We propose a generic method that solves the problem for various classes of query objects and distance functions in a unified way. Moreover, for linear space requirements the method simplifies the known approach based on ray-shooting in the lower envelope of an arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Sharir, M.: Arrangements and their Applications. Handbook of Computational Geometry, pp. 49–119 (1998)

    Google Scholar 

  2. Agarwal, P.K., Matoušek, J.: On Range Searching with Semialgebraic Sets. Discrete and Computational Geometry 11(1), 393–418 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, T.M.: Optimal Partition Trees. In: SCG 2010: Proceedings of the 2010 Annual Symposium on Computational Geometry, pp. 1–10. ACM (2010)

    Google Scholar 

  4. Chazelle, B.: The Discrepancy Method. Cambridge University Press (2000)

    Google Scholar 

  5. Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces of finite VC-dimension. Discrete and Computational Geometry 4(1), 467–489 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cole, R., Yap, C.-K.: Geometric Retrieval Problems. In: FOCS 1983: Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science, pp. 112–121 (1983)

    Google Scholar 

  7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry - Algorithms and Applications, 2nd edn. Springer (2000)

    Google Scholar 

  8. Haussler, D., Welzl, E.: Epsilon-nets and Simplex Range Queries. In: SCG 1986: Proceedings of the 2nd Annual Symposium on Computational Geometry, p. 71. ACM (1986)

    Google Scholar 

  9. Krauthgamer, R., Lee, J.: Navigating Nets: Simple Algorithms for Proximity Search. In: SODA 2004: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807. ACM (2004)

    Google Scholar 

  10. Matoušek, J.: Construction of epsilon-Nets. Discrete & Computational Geometry 5, 427–448 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Matoušek, J.: Efficient Partition Trees. Discrete and Computational Geometry 8(1), 315–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matoušek, J.: Geometric Discrepancy. Springer (1999)

    Google Scholar 

  13. Matoušek, J., Schwarzkopf, O.: On Ray shooting in Convex Polytopes. Discrete and Computational Geometry 10(1), 215–232 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Megiddo, N.: Applying Parallel Computation Algorithms in the Design of Serial Algorithms. Journal of the ACM 30(4), 852–865 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitra, P., Chaudhuri, B.B.: Efficiently computing the closest point to a query line. Pattern Recognition Letters 19(11), 1027–1035 (1998)

    Article  MATH  Google Scholar 

  16. Mitra, P., Mukhopadhyay, A.: Computing a Closest Point to a Query Hyperplane in Three and Higher Dimensions. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 787–796. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Mitra, P., Mukhopadhyay, A., Rao, S.V.: Computing the Closest Point to a Circle. In: CCCG 2003: Proceedings of the 15th Canadian Conference on Computational Geometry, pp. 132–135 (2003)

    Google Scholar 

  18. Mukhopadhyay, A.: Using simplicial partitions to determine a closest point to a query line. Pattern Recognition Letters 24(12), 1915–1920 (2003)

    Article  Google Scholar 

  19. Schöngens, M., Hruz, T.: A Simple Framework for the Generalized Nearest Neighbor Problem. Technical Report 758, Theoretical Computer Science, ETH Zurich (2012)

    Google Scholar 

  20. Sharir, M., Shaul, H.: Ray Shooting Amid Balls, Farthest Point from a Line, and Range Emptiness Searching. In: SODA 2005: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 525–534 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hruz, T., Schöngens, M. (2012). A Simple Framework for the Generalized Nearest Neighbor Problem. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics