Skip to main content

Advanced Numerical Modeling of Turbulent Atmospheric Flows

  • Chapter
  • First Online:
  • 4295 Accesses

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

The present chapter introduces the method of computational simulation to predict and study turbulent atmospheric flows. This includes a description of the fundamental approach to computational simulation and the practical implementation using the technique of large-eddy simulation. In addition, selected contributions from IPA scientists to computational model development and various examples for applications are given. These examples include homogeneous turbulence, convective boundary layers, heated forest canopy, buoyant thermals, and large-scale flows with baroclinic wave instability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A homogeneous “molecularly well-mixed" fluid is assumed, which is why no diffusion term occurs in the mass conservation; see Tuck (2008).

References

  • Clark T.L., Farley R.D.: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: a possible mechanism for gustiness. J. Atmos. Sci. 41, 329–350 (1984). 10.1175/1520-0469(1984)041<0329:SDWCIT>2.0.CO;2

    Google Scholar 

  • Craig, G.C., Dörnbrack, A.: Entrainment in cumulus clouds:what resolution is cloud-resolving? J. Atmos. Sci. 65, 3978–3988 (2008). doi:10.1175/2008JAS2613.1

    Article  ADS  Google Scholar 

  • Deardorff, J.W.: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound. Layer Meteor. 7, 199–226 (1974). doi:10.1007/BF00227913

    ADS  Google Scholar 

  • Dörnbrack, A.: Turbulent mixing by breaking gravity waves. J. Fluid Mech. 375, 113–141 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gerz, T., Schumann, U.: A possible explanation of countergradient fluxes in homogeneous turbulence. Theor. Comput. Fluid Dyn. 8, 169–181 (1996). doi:10.1007/BF00418056

    Article  MATH  Google Scholar 

  • Gerz, T., Schumann, U., Elghobashi, S.E.: Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200, 563–594 (1989). doi:10.1017/S0022112089000765

    Article  ADS  MATH  Google Scholar 

  • Geurts, B.J.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards Inc., Flourtown (2003)

    Google Scholar 

  • Grinstein, F.F., Margolin, L.G., Rider, W.J. (Eds.): Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics. Cambridge University Press, New York (2007)

    Google Scholar 

  • Kolmogorov, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady 30, 301–305 (1941)

    ADS  Google Scholar 

  • Kühnlein, C.: Solution-adaptive moving mesh solver for geophysical flows. Ph.D. thesis, Ludwig-Maximilians-Universität München (2011)

    Google Scholar 

  • Kühnlein, C., Smolarkiewicz, P.K., Dörnbrack, A.: Modelling atmospheric flows with adaptive moving meshes. J. Comput. Phys. 231(7), 2741–2763 (2012). doi:10.1016/j.jcp.2011.12.012

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lilly, D.K.: The representation of small scale turbulence in numerical simulation experiments. IBM Sci. Comput. Symp. Environ. Sci. 195–210 (1967)

    Google Scholar 

  • Moeng, C.-H., Schumann, U.: Composite structure of plumes in stratus-topped boundary layers. J. Atmos. Sci. 48, 2280–2292 (1991). doi:10.1175/1520-0469(1991)048<2280:CSOPIS>2.0.CO;2

    Google Scholar 

  • Nieuwstadt, F.T.M., Mason, P.J., Moeng, C.H. et al.: Large-eddy simulation of the convective boundary layer—A comparison of four computer codes. Thin Solid Films 1, 1–4 (1991)

    Google Scholar 

  • Potter, D.: Computational Physics. Wiley, New York (1973)

    Google Scholar 

  • Prusa, J.M., Smolarkiewicz, P.K., Wyszogrodzki, A.A.: EULAG, a computational model for multiscale flows. Comput. Fluids 37, 1193–1207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    Google Scholar 

  • Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511–562 (1989). doi:10.1017/S0022112089000753.

    Article  ADS  MATH  Google Scholar 

  • Schröttle, J., Dörnbrack, A.: Turbulence structure in a diabatically heated forest canopy composed of fractal pythagoras trees. submitted to Theor. Comput. Fluid Dyn. Dec 2011 (2012)

    Google Scholar 

  • Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975). doi:10.1016/0021-9991(75)90093-5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schumann, U.: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn. 2, 279–290 (1991). doi:10.1007/BF00271468

    Article  MATH  Google Scholar 

  • Schumann, U.: Stochastic backscatter of turbulence energy and scalar variance by random subgrid-scale fluxes. Proc. R. Soc. A. 451, 293–318 (1995). doi:10.1098/rspa.1995.0126

  • Schumann, U., Moeng, C.-H.: Plume budgets in clear and cloudy convective boundary layers. J. Atmos. Sci. 48, 1758–1770 (1991a). doi:10.1175/1520-0469(1991)048<1758:PBICAC>2.0.CO;2

  • Schumann, U., Moeng, C.-H.: Plume fluxes in clear and cloudy convective boundary layers. J. Atmos. Sci. 48, 1746–1757 (1991b). doi:10.1175/1520-0469(1991)048<1746:PFICAC>2.0.CO;2

  • Shaw, R.H., Schumann, U.: Large-eddy simulation of turbulent flow above and within a forest. Bound. Layer Meteor 61, 47–64 (1992). doi:10.1007/BF02033994

    Article  ADS  Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963). doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Google Scholar 

  • Tuck, A.F.: Atmospheric turbulence: a molecular dynamics perspective. Oxford University Press, (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kühnlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kühnlein, C., Dörnbrack, A., Gerz, T. (2012). Advanced Numerical Modeling of Turbulent Atmospheric Flows. In: Schumann, U. (eds) Atmospheric Physics. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30183-4_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30182-7

  • Online ISBN: 978-3-642-30183-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics