Skip to main content

1.1 Tectonic Evolution and Major Global Earth-Surface Palaeoenvironmental Events in the Palaeoproterozoic

  • Chapter
  • First Online:

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Many, if not all, of the long-term fluctuations in geological processes operating on Earth’s surface are tectonically driven and related to the interplay of plate tectonics and deep mantle dynamics resulting in supercontinental cycles and (super)plume events (Condie et al. 2001; Condie 2004). These processes include the amalgamation, dispersal, collision and geographic position of major land-masses which dictate volcanic and hydrothermal activities, changes in sea level and the global patterns of ocean circulation, thermal isolation of continents, climate change, rate of continental weathering and its influence on seawater composition, and atmospheric oxygen budget via control of burial and recycling of carbon and sulphur. Further, all of these are reflected in biological processes. However, well-documented and well-constrained examples of this conceptual model have been developed and tested largely on Phanerozoic rocks (Valentine and Moores 1970; Fischer 1984; Marshall et al. 1988; Hardebeck and Anderson 1996; Berner 2006; Rampino 2010). Although there have been a number of attempts to apply such concepts to “Deep Time”, in particular, the Palaeoproterozoic (Nance et al. 1986; Windley 1993; Lindsay and Brasier 2002; Condie et al. 2009), testing and verification of the models is challenging. The existence of continental masses, their palaeogeography and sizes in the late Archaean-early Palaeoproterozoic remain hypothetical and robust plate reconstructions are hampered by the small number of reliable palaeomagnetic data (Evans and Pisarevsky 2008).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharon P (2005) Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events. Precambrian Res 137:207–222

    Google Scholar 

  • Arndt NT (2004) Crustal growth rates. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events, 12th edn, Developments in Precambrian. Elsevier, Amsterdam, pp 155–158

    Google Scholar 

  • Aspler LB, Chiarenzelli JR (1998) Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sediment Geol 120:75–104

    Google Scholar 

  • Baker AJ, Fallick AE (1989a) Heavy carbon in two-billion-year-old marbles from Lofoten-Vesterålen, Norway: implications for the Precambrian carbon cycle. Geochim Cosmochim Acta 53:1111–1115

    Google Scholar 

  • Baker AJ, Fallick AE (1989b) Evidence from Lewisian limestone for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature 337:352–354

    Google Scholar 

  • Banerjee DM (1971) Precambrian stromatolitic phosphorites of Udaipur, Rajasthan, India. Geol Soc Am Bull 82:2319–2329

    Google Scholar 

  • Barley ME, Pickard AL, Sylvester PL (1997) Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385:55–58

    Google Scholar 

  • Barley ME, Bekker A, Krapez B (2005) Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett 238:156–171

    Google Scholar 

  • Barton MD, Johnson DA (1996) An evaporitic-source model for igneous related Feoxide (REE-Cu-Au-U) mineralization. Geology 24:259–262

    Google Scholar 

  • Bekasova NB, Dudkin OB (1982) Composition and nature of concretionary phosphorites from the early Precambrian of Pechenga (Kola Peninsula). Lithol Miner Resour 16:625–630 (in Russian)

    Google Scholar 

  • Bekker A, Eriksson KA (2003) A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: a record of the Kenorland breakup. Precambrian Res 120:327–364

    Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285

    Google Scholar 

  • Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003) Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325

    Google Scholar 

  • Bekker A, Holmden C, Beukes NJ, Kenig F, Eglinton B, Patterson WP (2008) Fractionation of inorganic and organic carbon during the Lomagundi (2.22–2.2 Ga) carbon isotope excursion. Earth Planet Sci Lett 271:278–291

    Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    Google Scholar 

  • Beukes NJ, Gutzmer J, Mukhopadhyay J (2003) The geology and genesis of high-grade hematite iron ore deposits, Institution of Mining and Metallurgy. Trans Sect B Appl Earth Sci 112:18–25

    Google Scholar 

  • Bibikova EV (1989) Uranium-lead geochronology of early stages of development of ancient shields. Nauka (Science), Moscow, p 180 (in)

    Google Scholar 

  • Bibikova EV, Samsonov AV, Petrova AU, Kirnozova TI (2005) The Archean geochronology of Western Karelia. Stratigraph Geol Correlat 13:459–475

    Google Scholar 

  • Bleeker W (2003) The late Archaean record: a puzzle in c. 35 pieces. Lithos 71:99–134

    Google Scholar 

  • Buchan KL, Mertanen S, Park RG, Pesonen LJ, Elming S-Å, Abrahamsen N, Bylund G (2000) Comparing drift of Laurentia and Baltica in the Proterozoic: the importance of key palaeomagnetic poles. Tectonophysics 319:167–198

    Google Scholar 

  • Budyko MI, Ronov AB, Yanshin AL (1985) History of the atmosphere. Gidrometeooizdat, Leningrad, p 208 (in Russian)

    Google Scholar 

  • Campbell IH, Allen CM (2008) Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci 1:554–558

    Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20

    Google Scholar 

  • Chauhan DS (1979) Phosphate-bearing stromatolites of the Precambrian Aravalli phosphorite deposits of the Udaipur region, their environmental significance and genesis of phosphorite. Precambrian Res 8:95–126

    Google Scholar 

  • Christie KW, Davidson A, Fahrig WE (1975) The paleomagnetism of the Kaminak dikes – No evidence of significant Hudsonian plate motion. Can J Earth Sci 12:2048–2064

    Google Scholar 

  • Condie KC (1995) Episodic ages of greenstones: a key to mantle dynamics? Geophys Res Lett 22:2215–2218

    Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents; a mantle avalanche connection? Earth Planet Sci Lett 163:97–108

    Google Scholar 

  • Condie KC (2000) Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322:153–162

    Google Scholar 

  • Condie KC (2004) Precambrian superplume events. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events, vol 12, Developments in Precambrian. Elsevier, Amsterdam, pp 163–172

    Google Scholar 

  • Condie KC, Des Marais DJ, Abbott D (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precambrian Res 106:239–260

    Google Scholar 

  • Condie KC, O’Neill C, Aster RC (2009) Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet Sci Lett 282:294–298

    Google Scholar 

  • Dalstra H, Harding T, Riggs T, Taylor D (2003) Banded iron formation hosted high grade hematite deposits, a coherent group? Institution of Mining and Metallurgy. Trans Sect B Appl Earth Sci 112:68–72

    Google Scholar 

  • Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2006) The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, 32nd edn. Geological Society Memoir, London, pp 579–598

    Google Scholar 

  • Dietrich RV (1997) Carbonate concretions: a bibliography, p 64. http://www.cst.cmich.edu/users/dieter1rv/concretions/

  • El Albani A, Bengtson S, Canfield DE, Bekker A, Macchiarelli R, Arnaud Mazurier A, Hammarlund EU, Boulvais P, Dupuy J-J, Fontaine C, Fürsich FT, Gauthier-Lafaye F, Janvier P, Javaux E, Ossa FO, Pierson-Wickmann A-C, Riboulleau A, Sardini P, Vachard D, Whitehouse M, Meunier A (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104

    Google Scholar 

  • El Tabakh M, Grey C, Pirajno F, Schreiber BC (1999) Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: origin and significance. Geology 27:871–874

    Google Scholar 

  • Evans DAD (2003) A fundamental Precambrian-Phanerozoic shift in Earth’s glacial style? Tectonophysics 375:353–385

    Google Scholar 

  • Evans DAD (2006) Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444:51–55

    Google Scholar 

  • Evans DAD, Pisarevsky SA (2008) Plate tectonics on early Earth? Weighing the paleomagnetic evidence. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth? Geological Society of America, Special Paper 440: 249–263

    Google Scholar 

  • Fallick AE, Melezhik VA, Simonson B (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, London, pp 169–188

    Google Scholar 

  • Fallick AE, Melezhik VA, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with banded iron formations. In: Neves L et al (eds) Modelacao de sistemas geologicos. Univeridade de Coimbra, Portugal, pp 57–71

    Google Scholar 

  • Fischer AG (1984) The two Phanerozoic supercycles. In: Berggren WA, Van Couvering JA (eds) Catastrophes and Earth history. Princeton University Press, Princeton, pp 129–148

    Google Scholar 

  • Frauenstein F, Veizer J, Beukes N, Van Niekerk HS, Coetzee LL (2009) Transvaal supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res 175:149–160

    Google Scholar 

  • Gastil RG (1960) The distribution of mineral dates in time and space. Am J Sci 258:1–35

    Google Scholar 

  • Gehör S (1994) REE distribution in the phosphorite bands within the Paleoproterozoic Tuomivaara and Pahtavaara ironformations, central and northern Finland. Geol Surv Finl Spec Pap 19:71–83

    Google Scholar 

  • Grassineau NV, Nisbet EG, Fowler CMR, Bickle MJ, Lowry D, Chapman HJ, Mattey DP, Abell P, Young J, Martin A (2002) Stable isotopes in the Archaean Belingwe Belt, Zimbabwe; evidence for a diverse microbial mat ecology. In: Fowler CMR, Ebinger CJ, Hawkesworth C (eds) The early Earth; physical, chemical and biological development, 199th edn. Geological Society Special Publication, London, pp 309–328

    Google Scholar 

  • Grotzinger JP (1989) Facies and evolution of Precambrian carbonate depositional systems; emergence of the modern platform archetype. In: Crevello PD, Wilson JJ, Sarg JF, Read F (eds) Controls on carbonate platform and basin development, vol 44. Special Publication of Society of Economic Paleontologists and Mineralogists, Tulsa, pp 79–106

    Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402

    Google Scholar 

  • Gutzmer J, Beukes NJ, Yeh HW (1997) Fault-controlled metasomatic alteration of Early Proterozoic sedimentary manganese ore at Mamatwan Mine, Kalahari manganese field, South Africa. S Afr J Geol 100:53–71

    Google Scholar 

  • Halls HC, Davis DW, Stott GM, Ernst RE, Hamilton MA (2008) The Paleoproterozoic marathon large igneous province: new evidence for a 2.1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province. Precambrian Res 162:327–353

    Google Scholar 

  • Hamilton J (1977) Sr isotope and trace element studies of the Great Dyke and Bushveld mafic phase and their relation to early Proterozoic magma genesis in southern Africa. J Petrol 18:24–52

    Google Scholar 

  • Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HD (2004) Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett 225:43–52

    Google Scholar 

  • Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Bull Geol Surv Finl 367:192

    Google Scholar 

  • Hanski E, Huhma H, Vaasjoki M (2001) Geochronology of northern Finland: a summary and discussion. In: Vaasjoki M (ed) Radiometric age determination from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences, 33rd edn. Geological Survey of Finland Special Paper, Espoo, pp 255–279

    Google Scholar 

  • Hardebeck J, Anderson DL (1996) Eustasy as a test of a Cretaceous superplume hypothesis. Earth Planet Sci Lett 137:101–108

    Google Scholar 

  • Hayes JM (1994) Global methanotrophy at the Archean-Proterozoic transition, In: Bengtson S (ed) Early life on Earth: nobel symposium 84, Columbia University Press, New York, pp 220–236

    Google Scholar 

  • Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc B 361:931–950

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 93–135

    Google Scholar 

  • Heaman LM (1997) Global mafic volcanism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25:299–302

    Google Scholar 

  • Hoffman PF (1988) United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Ann Rev Earth Planet Sci 16:543–603

    Google Scholar 

  • Hoffman PF (1989) Speculations on Laurentia’s first gigayear (2.0 to 1.0 Ga). Geology 17:135–138

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B 361:903–915

    Google Scholar 

  • Jones DL, Robertson DM, McFadden PL (1975) A palaeomagnetic study of Precambrian dyke swarms associated with the Great Dyke of Rhodesia. Trans Geol Soc S Afr 78:57–65

    Google Scholar 

  • Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838

    Google Scholar 

  • Käpyaho A, Mänttäri I, Huhma H (2006) Growth of Archaean crust in the Kuhmo district, eastern Finland: U–Pb and Sm–Nd isotope constraints on plutonic rocks. Precambrian Res 146:95–119

    Google Scholar 

  • Karhu JA (1993) Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geol Surv Finl Bull 371:1–87

    Google Scholar 

  • Karhu JA (2005) Paleoproterozoic carbon isotope excursion, In: Lehtinen M, Nurmi PA, Rämö O (eds) Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield, Elsevier, Amsterdam, p. 669–680.

    Google Scholar 

  • Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24:867–879

    Google Scholar 

  • Kasting JE (2004) When methane made climate. Sci Am 291:78–85

    Google Scholar 

  • Kasting JE (2005) Methane and climate during the Precambrian era. Precambrian Res 137:119–129

    Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberg RE (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci 97:1400–1405

    Google Scholar 

  • Klein C, Beukes NJ, Schopf JW (1987) Filamentous microfossils in the early Proterozoic Transvaal supergroup: their morphology, significance and paleoenvironmental setting. Precambrian Res 36:81–94

    Google Scholar 

  • Knudsen AC, Gunter ME (2002) Sedimentary phosphates – an example: phosphoria formation, southeastern Idaho, U.S.A., In: Kohn MJ, Rakovan J, Hughes J (eds) Rev Mineral Geochemist: Phosphate: geochemical, geobiological, and materials importance 48: 363–389

    Google Scholar 

  • Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME, Arndt NT, Zahnle K, Kamber BS (2009) Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–753

    Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102:11131–11136

    Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278

    Google Scholar 

  • Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–1036

    Google Scholar 

  • Lahtinen R, Korja A, Nironen M (2005) Paleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 669–680

    Google Scholar 

  • Lindsay JF, Brasier MD (2002) Did global tectonics drive early biosphere evolution? Precambrian Res 114:1–34

    Google Scholar 

  • Marmo JS (1992) The lower Proterozoic Hokkalampi paleosol in North Karelia, eastern Finland. In: Golubic S, Kimberley MM, Trudinger PA, Schidlowski M (eds) Early organic evolution: implications for energy and mineral resources. Springer, Berlin/Heidelberg, pp 41–66

    Google Scholar 

  • Marmo JS, Ojakangas RW (1984) Lower Proterozoic glaciogenic deposits, eastern Finland. Geol Soc Am Bull 98:1055–1062

    Google Scholar 

  • Marshall H, Walker J, Kuhn W (1988) Longterm climate change and the geochemical cycle of carbon. J Geophys Res 93:791–801

    Google Scholar 

  • Martin DMcB (1999) Depositional setting and implications of Paleoproterozoic glaciomarine sedimentation in the Hamersley Province, Western Australia. Geol Soc Am Bull 111:189–203

    Google Scholar 

  • Martin DMcB, Clendenin CW, Krapez B, McNaughton NJ (1998) Tectonic and geochronological constraints on late Archaean and Palaeoproterozoic stratigraphic correlation within and between the Kaapvaal and Pilbara Cratons. J Geol Soc Lond 155:311–322

    Google Scholar 

  • Martin AP, Condon DJ, Prave AR, Melezhik VA, Fallick A (2010) Constraining the termination of the Lomagundi-Jatuli positive isotope excursion in the Imandra-Varzuga segment (Kola Peninsula, Russia) of the North Transfennoscandian Greenstone Belt by high-precision ID-TIMS, AGU, San Francisco, 13–17 Dec 2010

    Google Scholar 

  • Melezhik VA (1992) Early Proterozoic sedimentary and rock-forming basins of the Baltic Shield. Nauka (Science), Leningrad, p 256 (in Russian)

    Google Scholar 

  • Melezhik VA, Fallick AE (1996) A widespread positive δ13Ccarb anomaly at around 2.33–2.06 Ga on the Fennoscandian Shield: a paradox? Terra Nova 8:141–157

    Google Scholar 

  • Melezhik VA, Predovsky AA (1984) The first discovery of Precambrian manganite-bearing rocks in the Kola Peninsula and their metallogenetic significance. Commun USSR Acad Sci 274(2):392–394

    Google Scholar 

  • Melezhik VA, Basalaev AA, Predovsky AA, Balabonin HL, Bolotov VI, Pavlova MA, Gavrilenko BV, Abzalov MZ (1988) Carbonaceous rocks of the early stages of Earth evolution. Nauka (Science), Leningrad, p 200 (in Russian)

    Google Scholar 

  • Melezhik VA, Grinenko LN, Fallick AE (1998) 2000 Ma sulphide concretions from the ‘Productive’ Formation of the Pechenga Greenstone Belt, NW Russia: genetic history based on morphological and isotopic evidence. Chem Geol 148:61–94

    Google Scholar 

  • Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV (1999a) Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci Rev 48:71–120

    Google Scholar 

  • Melezhik VA, Fallick AE, Filippov MM, Larsen O (1999b) Karelian shungite – an indication of 2000 Ma-year-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth-Sci Rev 47:11–40

    Google Scholar 

  • Melezhik VA, Fallick AE, Medvedev PV, Makarikhin V (2001) Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments. Sedimentology 48:379–397

    Google Scholar 

  • Melezhik VA, Filippov MM, Romashkin AE (2004) A giant Palaeoproterozoic deposit of shungite in NW Russia: genesis and practical applications. Ore Geol Rev 24:135–154

    Google Scholar 

  • Melezhik VA, Fallick AE, Hanski E, Kump L, Lepland A, Prave A, Strauss H (2005a) Emergence of the aerobic biosphere during the Archean-Proterozoic transition: challenges for future research. GSA Today 15:4–11

    Google Scholar 

  • Melezhik VA, Fallick AE, Rychanchik DV, Kuznetsov AB (2005b) Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, δ13C excursions and the rise of atmospheric oxygen. Terra Nova 17:141–148

    Google Scholar 

  • Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658

    Google Scholar 

  • Melezhik VA, Fallick AE, Filippov MM, Lepland A, Rychanchik DV, Deines JE, Medvedev PV, Romashkin AE, Strauss H (2009) Petroleum surface oil seeps from Palaeoproterozoic petrified giant oilfield. Terra Nova 21:119–126

    Google Scholar 

  • Mertanen S, Pesonen LJ (2005) Drift history of the shield. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 645–668

    Google Scholar 

  • Miall AD (1983) Glaciomarine sedimentation in the Gowganda Formation (Huronian), northern Ontario. J Sediment Res 53:477–491

    Google Scholar 

  • Mikkola P, Huhma H, Heilimo E, Whitehouse M (2011) Archean crustal evolution of the Suomussalmi district as part of the Kianta Complex, Karelia: constraints from geochemistry and isotopes of granitoids. Lithos 125:287–307

    Google Scholar 

  • Morozov AF, Hakhaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Trans Russ Acad Sci 435(2):230–233

    Google Scholar 

  • Mossman DJ, Gauthier-Lafaye F, Jackson SE (2005) Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Res 137:253–272

    Google Scholar 

  • Moucha R, Forte AM, Mitrova JX, Rowley DB, Quere S, Simmons NA, Grand SP (2008) Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet Sci Lett 271:101–108

    Google Scholar 

  • Müller SG, Krapež B, Barley ME, Barley ME, Fletcher IR (2005) Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: new insights from in situ SHRIMP dating of baddeleyite from mafic intrusions. Geology 33:577–580

    Google Scholar 

  • Nance RD, Worsley TR, Moody JB (1986) Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes. Geology 14:514–518

    Google Scholar 

  • Nance R, Worsley T, Moody J (1988) The supercontinent cycle. Sci Am 259:72–79

    Google Scholar 

  • Nelson DR (2004) Episodic crustal growth during catastrophic global-scale mantle overturn events. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events, vol 12, Developments in Precambrian. Elsevier, Amsterdam, pp 180–183

    Google Scholar 

  • Nelson DR, Trendall AF, Altermann W (1999) Chronological correlations between the Pilbara and Kaapvaal cratons. Precambrian Res 97:165–189

    Google Scholar 

  • Nironen M (2005) Proterozoic orogenic granitoid rocks. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 443–480

    Google Scholar 

  • O’Neill C, Lenardic A, Moresi L, Torsvik TH, Lee C-TA (2007) Episodic Precambrian subduction. Earth Planet Sci Lett 262:552–562

    Google Scholar 

  • Papineau D (2010) Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites. Astobiology 10:1–17

    Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212

    Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res 105:11981–11990

    Google Scholar 

  • Pettijohn FJ (1940) Archean metaconcretions of Thunder Lake, Ontario. Geol Soc Am Bull 51:1841–1850

    Google Scholar 

  • Pickard AL (2003) SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kurumn Iron Formation, Northern Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara cratons. Precambrian Res 125:275–315

    Google Scholar 

  • Pope MC, Grotzinger JP (2003) Paleoproterozoic Stark Formation, Athapuscow Basin, Northwest Canada: record of cratonic-scale salinity crisis. J Sediment Res 73:280–295

    Google Scholar 

  • Rampino MR (2010) Volcanism, climatic change, and the geological record. Sedimentat Volcan Sett 1:9–18

    Google Scholar 

  • Reddy SM, Evans DAD (2009) Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. In: Reddy SM, Mazumdr R, Evans DAD, Collins AS (eds) Palaeoproterozoic supercontinents and global evolution, 323rd edn. Geological Society, London, Special Publication, London, pp 165–198

    Google Scholar 

  • Salop LI (1982) Geological evolution of the Earth in the Precambrian. Nedra, Leningrad, p 343 (in Russian)

    Google Scholar 

  • Schidlowski M, Eichmann R, Junge CE (1975) Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res 2:1–69

    Google Scholar 

  • Schneiderhan EA, Gutzmer J, Strauss H, Mezger K, Beukes NJ (2006) The chemostratigraphy of a Paleoproterozoic MnF-BIF succession – the Voëlwater Subgroup of the Transvaal Supergroup in Griqualand West South Africa. S Afr J Geol 109:63–80

    Google Scholar 

  • Schröder S, Bekker A, Beukes NJ, Strauss H, van Niekerk HS (2008) Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporates in the 2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova 20:108–117

    Google Scholar 

  • Silver PG, Behn MD (2008) Intermittent plate tectonics. Science 319:85–88

    Google Scholar 

  • Sorjonen-Ward P, Luukkonen EJ (2005) Archean rocks In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield, Elsevier, Amsterdam, pp 19–99

    Google Scholar 

  • Valentine JW, Moores EM (1970) Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657–659

    Google Scholar 

  • Veizer J (2005) Celestial climate driver: a perspective from four billion years of the carbon cycle. Geoscience Canada 32:3–28

    Google Scholar 

  • Visser JNJ (1971) The deposition of the Griquatown glacial member in the Transvaal Supergroup. Trans Geol Soc S Afr 74:187–199

    Google Scholar 

  • Vogel DC, Vuollo JI, Alapieti TT, James RS (1998) Tectonic, stratigraphic, and geochemical comparison between ca. 2500–2440 Ma mafic igneous events in the Canadian and Fennoscandian Shields. Precambrian Res 92:89–116

    Google Scholar 

  • Wanke A, Melezhik VA (2005) Palaeoproterozoic sedimentation and stromatolite growth in an advanced intracontinental rift associated with the marine realm: a record of the Neoarchaean continent breakup? Precambrian Res 140:1–35

    Google Scholar 

  • Williams H, Hoffman PF, Lewry JF, Monger JWH, Rivers T (1991) Anatomy of North America: thematic geologic portraits of the continent. Tectonophysics 187:117–134

    Google Scholar 

  • Windley BF (1993) Uniformitarianism today: plate tectonics is the key to the past. J Geol Soc Lond 1:7–19

    Google Scholar 

  • Winter BL, Knauth LP (1992) Stable isotope geochemistry of early Proterozoic carbonate concretions in the Animikie Group of the Lake Superior region; evidence for anaerobic bacterial processes. Precambrian Res 54:131–151

    Google Scholar 

  • Worsley TR, Nance D, Moody JB (1984) Global tectonics and eustasy for the past 2 billion years. Marine Geol 58:373–400

    Google Scholar 

  • Young GM (1970) An extensive early Proterozoic glaciation in North America. Palaeogeogr Palaeoclimatol Palaeoecol 7:85–100

    Google Scholar 

  • Young GM, Long DGF, Fedo CH, Nesbitt HW (2001) The Paleoproterozoic Huronian Basin: product of a Wilson cycle accompanied by glaciation and meteorite impact. Sediment Geol 141–142:233–254

    Google Scholar 

  • Yudovich YE, Makarikhin VV, Medvedev PV, Sukhanov NV (1991) Carbon isotope anomalies in carbonates of the Karelian Complex. Geochemist Int 28:56–62

    Google Scholar 

  • Zahnle K, Claire M, Catling D (2006) The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–283

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Melezhik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melezhik, V.A., Kump, L.R., Hanski, E.J., Fallick, A.E., Prave, A.R. (2013). 1.1 Tectonic Evolution and Major Global Earth-Surface Palaeoenvironmental Events in the Palaeoproterozoic. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29682-6_1

Download citation

Publish with us

Policies and ethics