Skip to main content

Semantic Segmentation of Microscopic Images Using a Morphological Hierarchy

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Abstract

The objective of semantic segmentation in microscopic images is to extract the cellular, nuclear or tissue components. This problem is challenging due to the large variations of these components features (size, shape, orientation or texture). In this paper we present an automatic technique to robustly identify the epithelial nuclei (crypt) against interstitial nuclei in microscopic images taken from colon tissues. The relationship between the histological structures (epithelial layer, lumen and stroma) and the ring like shape of the crypt are considered. The crypt inner boundary is detected using a closing morphological hierarchy and its associated binary hierarchy. The outer border is determined by the epithelial nuclei, overlapped by the maximal isoline of the inner boundary. The evaluation of the proposed method is made by computing the percentage of the mis-segmented nuclei against epithelial nuclei per crypt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ta, V.T., Lezoray, O., El Moataz, A., Schupp, S.: Graph-based tools for microscopic cellular image segmentation. Pattern Recognition 42(6), 1113–1125 (2009)

    Article  Google Scholar 

  2. Nattkemper, T.W.: Automatic segmentation of digital micrographs: A survey. Journal Studies in Health Technology and Informatics 107(2), 847–852 (2005)

    Google Scholar 

  3. Wu, H.S., Xu, R., Harpaz, N., Burstein, D., Gil, J.: Segmentation of intestinal gland images with iterative region growing. Journal of Microscopy 220(3), 190–204 (2005)

    Article  MathSciNet  Google Scholar 

  4. Farjam, R., Soltanian-Zadeh, H., Jafari-Khouzani, K., Zoroofi, R.A.: An image analysis approach for automatic malignancy determination of prostate pathological images. Clinical Cytometry 72B(4), 227–240 (2007)

    Article  Google Scholar 

  5. Gunduz-Demir, C., Kandemir, M., Tosun, A.B., Sokmensuer, C.: Automatic segmentation of colon glands using object-graphs. Medical Image Analysis 14(1), 1–12 (2010)

    Article  Google Scholar 

  6. Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Gland segmentation and computerized Gleason grading of prostate histology by integrating low-, high-level and domain specific information. In: 2nd MICCAI Workshop Microscopic Image Analysis with Appl. in Biology, Piscataway, NJ, USA, (2007)

    Google Scholar 

  7. Humphries, A., Wright, N.A.: Colonic Crypt Organization and Tumorigenesis: Human Colonic Crypts. Nature Reviews Cancer 8(6), 415–424 (2008)

    Article  Google Scholar 

  8. Morikawa, K., Yanagida, J.: Visualization of individual DNA molecules in solution by light microscopy: DAPI staining method. Japanese Biochemical Society 89(2), 693–696 (1981)

    Article  Google Scholar 

  9. Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution Image Segmentations in Graph Pyramids. In: Kandel, A., Bunke, H., Last, M. (eds.) Applied Graph Theory in Computer Vision and Pattern Recognition, vol. 52, pp. 3–41. Springer, Wien (2007)

    Chapter  Google Scholar 

  10. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Addison-Wesley, Reading (1992)

    Google Scholar 

  11. Haralick, R., Lee, J., Lin, C., Zhuang, X.: Multi-resolution Morphology. In: First IEEE Conference on Computer Vision, London (1987)

    Google Scholar 

  12. Haralick, R.M., Zhuang, X., Lin, C., Lee, J.S.J.: The digital morphological sampling theorem. IEEE Trans. Acoust., Speech, Signal Processing 37, 2067–2090 (1989)

    Article  MATH  Google Scholar 

  13. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smochina, C., Manta, V., Kropatsch, W. (2011). Semantic Segmentation of Microscopic Images Using a Morphological Hierarchy. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics