Skip to main content

Integrative Perspectives: In Quest of a Coherent Framework for Origins of Life on Earth

  • Chapter
  • First Online:
Origins of Life: The Primal Self-Organization

Abstract

By taking an overarching approach, this chapter connects various leads from bottom-up and top-down considerations about origins-of-life research. As no firmly accepted standard model for the emergence and early evolution of life on Earth has yet been established, rethinking of old problems and reevaluation from first principles is given precedence over unreflected repetition of widely held assumptions. In brief, a chain of bottom-up inference focuses on tentative transitions from geochemical pore space reactor conditions in upper sedimentary layers, exposed to sunlight and wet/drying cycles. Photo-active metal sulfides, catalytic minerals, organic heterocyclic cofactors, and short prebiotic peptides are assumed to precede the emergence of oligonucleotides. Oligo-ribonucleotides, in turn, speeded up the generation of more and longer stochastic peptides, later on to be replaced by coded protein synthesis. Up to the level of a peptide/protein-assisted RNA world scenario, a primarily photoautotrophic molecular ecosystem is assumed to develop through a range of sessile precellular stages. Conceptionally, early protocells would resemble certain plasmodial/syncytial organisms, rather than free-living microbial cells. The generation and “escape” of genuine cells as quasi-autonomous and propagative entities had to await the assembly of DNA-based integral genomes. Such microbial cells of prokaryotic life style diverged in several rounds. Remnants of the communal precellular systems, however, did not die out completely, but organized themselves as more sluggishly evolving cell-like organisms of a different kind. Specializing in recycling of particulate organic matter, these larger organisms retained and perfected much higher degrees of subcellular compartmentalization and cytoskeletal infrastructure, which directly gave rise to the proto-eukaryotic lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Intended or not, the underlying insistence on a primacy of deductive logic in deceptive jargon is playing the creationists’ game against scientific modesty. In particular, the various assertions declared as “ null hypotheses ” evert the scientific usage of this term. As phrased like “ Physicodynamics alone cannot organize itself into … ( functional systems )…”

    (Abel 2009 ), these statements by no means describe the most trivial explanation from a scientific point of view. If true, that is, they definitely would exclude the emergence of life on earth from any scientifically sound hypothesis in terms of physical/chemical reactions, but should require some extra-scientific or supra-natural input instead. By that token, these so-called null hypotheses take a creationist position for granted, until it be decisively refuted by experimental evidence.

  2. 2.

    This cycle operates by burrying limestone carbonates in sediments, which in turn are recycled by seafloor subduction and CO 2 outgassing in volcanic eruptions. As carbonate precipitation increases with rising pH, the biogenic alcalization of the oceans greatly accelerated CO 2 depletion, thus lowering its concentration to modern levels.

  3. 3.

    such as ripples on a beach, or a convective supercell creating a tornado.

  4. 4.

    e.g. the regularly oscillating Beluzov-Zhabotinsky reaction

  5. 5.

    A common feature of fractal objects is the lack of smoothness in their contures at any scale of zooming in. Thereby they fill much of a 2-D or 3-D enveloping space, but never completely so.

  6. 6.

    Real rivers, of course, are also subject to surface–groundwater exchange.

  7. 7.

    Other C/O/H precursors for membrane bulk components are linear terpenoids and more complex steroids, which like fatty acids, are derived from activated acetic acid. The bilayered membrane structure results from arranging all the lipids in parallel on either side, with all the hydrophilic head groups facing the the water outside and the lipophilic tails hiding away inside the membrane layers (Sturgis, Chap. 8).

  8. 8.

    Catalytic activity is measured as converted matter per time and volume (M L −1 s −1 ).

  9. 9.

    The precise identity of the central X atom (probably N) has not yet been established.

  10. 10.

    This is equivalent to the familiar oxidative Krebs cycle of animal respiration, run in reverse.

  11. 11.

    This common charge rule has traditionally been rationalized as a precaution to keep such metabolites inside the lipophilic membrane enclosure of the cell (Davis 1958 ; Westheimer 1987 ), wheras here the handle function for stable anchorage at a chelating and catalytic surface site is given more weighting and attention.

  12. 12.

    Of this kind, the formation of α-helix and β-sheets in proteins, and double helix in nucleic acids, have become most successful in biological evolution.

  13. 13.

    carrying the growing peptide (P) and the incoming amino acid (A).

  14. 14.

    This includes methionine, which strictly speaking is not counted among the aliphatic amino acids, but converted to N-formyl methionine, as in bacterial initiation, the polar nature of a peptide’s amino terminus is concealed effectively.

  15. 15.

    The peculiar CCACCA element still acts as a powerful signal for terminal processing (Maizels and Weiner 1994 ), and genomic tRNA sequences still ending in CCACCA in many archaea and bacteria preferentially encode nonpolar amino acids (GtRNAdb 2010 ).

  16. 16.

    To start with, glycine, alanine, aspartate and valine would have been most abundant (Moeller and Janssen 1992 ), and others would gradually come up, according to the number of reaction steps required in a diversifying protometabolism based on the TCA cycle (Davis 1999 ).

  17. 17.

    Many bacteria have yet fewer than 20 aaRSs, due to recoding of certain amino acid residues that are restructured on charged tRNAs (Sheppard et al. 2008 ).

  18. 18.

    The three sites concern the activated amino acid (A), the growing peptide (P) and the exiting tRNA (E). At a transient hybrid state, following trans-peptidation, the peptide-receiving tRNA translocates to the P site in the large subunit while it still occupies the A site in the small subunit.

  19. 19.

    The assertion that the same RNA indeed occurs inside and outside of mitochondria needs to be scrutinized more critically, since the only P/MRP-like RNA gene ( MRP1 ) hitherto detected in yeast mtDNA is distinctly different from both the nuclear RNase P and MRP genes ( RPR1 , NME1 ), and a translocation process of any nuclear RNA into the mitochondrion is hitherto unprecedented.

  20. 20.

    Group I self-splicing introns are structurally unrelated. Also, they excise and circularize by a different mechanism (Cech 1990 ).

  21. 21.

    As cytosine spontaneously deaminates to uracil, such a premutational damage could not systematically be reversed, for so long as uracil was a naturally occurring constituent in all the genes. Now that the genes carry T instead of U, newly appearing G:U pairs (from G:C) are detected as being anomalous and subjected to a special repair mechanism.

  22. 22.

    This differs from " closed mitosis " in fungi and many protists, where the nuclear envelope remains intact throughout the entire cell division cycle.

  23. 23.

    The nominal patronage for either model appeals to more than symbolic affiliations. While Eigen ’s thresholds against inevitable error catastrophy set limits to the length of integral genomes, the complex pre-cells of Kandler ’s model bypass the Eigen limits with highly fragmented and multiply redundant genomes, so as to allow sampling variation of overlapping subsets in different descendant lineages.

  24. 24.

    A small diffusional distance facilitates exchange of reactants in metabolic processes. In comparison, bacteria are small in three dimensions, and inbetween, hyphal mycelia are small in two of three dimensions.

  25. 25.

    This notion is modelled after the plasmodial slime mold Physarum polycephalum , where reticulate streams of multi-nucleate cytoplasm can spread on a surface in various directions, pinching off occasionally, but also fusing again, where two approaching streams happen to meet.

  26. 26.

    K refers to carrying capacity and r to the maximal intrinsic rate of natural increase. Accordingly, K-selection favors limited growth, maintenance and replacement, while r-selection drives unlimited multiplication and dispersal, which occasionally is truncated by widespread collapse.

  27. 27.

    Charles Darwin himself was very cautious, at least in public, not to speculate about the ultimate beginning(s) of life on Earth. Not so reluctant was Ernst Haeckel, a fervent promoter of Darwinian principles, deliberately combining the major evolutionary branches in a single tree (Haeckel 1866 ; Wikipedia 2011 ).

  28. 28.

    Mitochondria of essentially all eukaryotes (for respiratory electron transfer chain and oxidative phosphorylation) relate to α-proteobacteria (Clements et al. 2009 ), while plastids of green plants (for photosynthesis) relate to cyanobacteria (Gross et al. 2008 ).

  29. 29.

    to be equated with porespace in sedimentary layers, as promoted in the current paper.

Abbreviations

aaRS:

aminoacyl tRNA synthetase

ATP:

adenosine triphosphate

DNA:

deoxy ribonucleic acid

LUCA:

last universal common (or cellular) ancestor

LUCAS:

last universal communal ancestor state

mRNA:

messenger RNA

mtDNA:

mitochondrial DNA

NAD(P):

nicotinamide adenine dinucleotide (phosphate)

PLP:

pyridoxal phosphate

PRPP:

5′-phosphoribosyl 1′-pyrophosphate

PTC:

peptidyl transferase center

RNA:

ribonucleic acid

RNP:

RNA-protein (complex or particle)

RNPd:

RNA-peptide (complex or particle)

RNY:

R: purine (A or G) Y: pyrimidine (U or C), N: any type of nucleic base

rRNA:

ribosomal RNA

rTCA:

reductive tricarboxylic acid (cycle)

SIPF:

Salt-Induced Peptide Formation

snoRNA:

small nucleolar RNA

sRNA:

small RNA non-translated

tRNA:

transfer RNA

UV:

ultraviolet (radiation)

References

  • Abel DL (2009) The capabilities of chaos and complexity. Int J Mol Sci 10:247–291

    PubMed  CAS  Google Scholar 

  • Abel DL, Trevors JT (2006) Self-organization vs. self-ordering events in life-origin models. Phys Life Rev 3:211–228

    Google Scholar 

  • Agmon I (2009) The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci 10:2921–2934

    PubMed  CAS  Google Scholar 

  • Agmon I, Bashan A, Zarivach R, Yonath A (2005) Symmetry at the active site of the ribosome: structural and functional implications. Biol Chem 386:833–844

    PubMed  CAS  Google Scholar 

  • Agmon I, Bashan A, Yonath A (2006) On ribosome conservation and evolution. Isr J Ecol Evol 52:359–379

    Google Scholar 

  • Altstein AD (1987) Origin of the genetic system: the progene hypothesis. Mol Biol Moscow 21:257–268

    Google Scholar 

  • Anderson DJ, Hetzer MW (2008) Shaping the endoplasmic reticulum into the nuclear envelope. J Cell Sci 121:137–142

    PubMed  CAS  Google Scholar 

  • Antonin W, Mattaj IW (2005) Nuclear pore complexes: round the bend? Nat Cell Biol 7:10–12

    PubMed  CAS  Google Scholar 

  • Aspinall TV, Gordon JMB, Bennett HJ, Karahalios P, Bukowski JP, Walker SC, Engelke DR, Avis JM (2007) Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 35:6439–6450

    PubMed  CAS  Google Scholar 

  • Aubrey AD, Cleaves HJ, Bada JL (2009) The role of submarine hydrothermal systems in the synthesis of amino acids. Orig Life Evol Biosph 39:91–108

    PubMed  CAS  Google Scholar 

  • Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci USA 104:9346–9351

    PubMed  CAS  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374

    PubMed  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    PubMed  CAS  Google Scholar 

  • Bapteste E, Boucher Y (2008) Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 16:200–207

    PubMed  CAS  Google Scholar 

  • Barbu V (2010) Self-organized criticality and convergence to equilibrium of solutions to nonlinear diffusion equations. Ann Rev Control 34:52–61

    Google Scholar 

  • Barrow JD, Morris SC, Freeland SJ, Harper CL Jr (eds) (2008) Fitness of the cosmos for life: biochemistry and fine-tuning. Cambridge University Press, Cambridge

    Google Scholar 

  • Bartsev SI (2004) Essence of life and multiformity of its realization: expected signatures of life. Adv Space Res 33:1313–1317

    Google Scholar 

  • Bebié J, Schoonen AA (1999) Pyrite and phosphate in anoxia and an origin-of-life hypothesis. Earth Planet Sci Lett 171:11–15

    Google Scholar 

  • Begley TP (2006) Cofactor biosynthesis: an organic chemist’s treasure trove. Nat Prod Rep 23:15–25

    PubMed  CAS  Google Scholar 

  • Belousoff MJ, Davidovich C, Zimmerman E, Caspi Y, Wekselman I, Rozenszajn L, Shapira T, Sade-Falk O, Taha L, Bashan A, Weiss MS, Yonath A (2010) Ancient machinery embedded in the contemporary ribosome. Biochem Soc Trans 38:422–427

    PubMed  CAS  Google Scholar 

  • Belshaw R, Gardner A, Rambaut A, Pybus OG (2008) Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol 23:188–193

    PubMed  Google Scholar 

  • Benkö G, Centler F, Dittrich P, Flamm C, Stadler B, Stadler PF (2009) A topological approach to chemical organizations. Artif Life 15:71–88

    PubMed  Google Scholar 

  • Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul, London

    Google Scholar 

  • Bishop KJM, Klajn R, Grzybowski BA (2006) The core and most useful molecules in organic chemistry. Angew Chem Int Ed 118:5474–5480

    Google Scholar 

  • Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862

    PubMed  CAS  Google Scholar 

  • Blackburn EH, Collins K (2010) Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003558

  • Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4

    PubMed  CAS  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23 S ribosomal RNA. Nature 457:977–980

    PubMed  CAS  Google Scholar 

  • Bon E, Casaregola S, Blandin G, Llorente B, Neuveglise C et al (2003) Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res 31:1121–1135

    PubMed  CAS  Google Scholar 

  • Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 6:322–331

    Google Scholar 

  • Boucher Y, Kamekura M, Doolittle WF (2004) Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol Microbiol 52:515–527

    PubMed  CAS  Google Scholar 

  • Brack A (2002) Water, the spring of life. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Heidelberg, pp 79–88

    Google Scholar 

  • Brack A (2007) From interstellar amino acids to prebiotic catalytic peptides: a review. Chem Biodivers 4:665–679

    PubMed  CAS  Google Scholar 

  • Bruylants GK, Bartik K, Reisse J (2010) Is it useful to have a clear-cut definition of life? On the use of fuzzy logic in prebiotic chemistry. Orig Life Evol Biosph 40:137–143

    PubMed  Google Scholar 

  • Butcher SE (2009) The spliceosome as ribozyme hypothesis takes a second step. Proc Natl Acad Sci USA 106:12211–12212

    PubMed  CAS  Google Scholar 

  • Bywater RP (2009) Membrane-spanning peptides and the origin of life. J Theor Biol 261:407–413

    PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Calvin M (2008) The origin of life on Earth and elsewhere II. [1960] Lawrence Berkeley National Laboratory, repositories, http://escholarship.org/uc/item/9796r5k9

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (eds) (2001) Self-organization in biological systems. Princeton University Press, Princeton

    Google Scholar 

  • Cameron AGW (2001) From interstellar gas to the Earth–Moon system. Meteorit Planet Sci 36:9–22

    CAS  Google Scholar 

  • Cancherini DV, França GS, de Souza SJ (2010) The role of exon shuffling in shaping protein-protein interaction networks. BMC Genomics 11(Suppl 5):S11

    PubMed  Google Scholar 

  • Canup RM (2004) Simulations of a late lunar-forming impact. Icarus 168:433–456

    CAS  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the moon in a giant impact near the end of the Earth’s formation. Nature 412:708–771

    PubMed  CAS  Google Scholar 

  • Caporaso JG, Yarus M, Knight R (2005) Error minimization and coding triplet/binding site associations are independent features of the canonical genetic code. J Mol Evol 61:597–607

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res 135:251–279

    CAS  Google Scholar 

  • Cech TR (1986) The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44:207–210

    PubMed  CAS  Google Scholar 

  • Cech TR (1990) Self-splicing of group I introns. Ann Rev Biochem 59:543–568

    PubMed  CAS  Google Scholar 

  • Chafetz HS, Guidry S (1999) Bacterial shrubs, crystal shrubs, and raycrystal shrubs: bacterial vs. abiotic precipitation. Sed Geol 126:57–74

    Google Scholar 

  • Chang DD, Fisher RP, Clayton DA (1987) Roles for a promoter and RNA processing in the synthesis of mitochondrial displacementloop strands. Biochim Biophys Acta 909:85–91

    PubMed  CAS  Google Scholar 

  • Chapman CR, Cohen BA, Grinspoon DH (2007) What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189:233–245

    Google Scholar 

  • Claverie JM, Ogata H, Audic S, Abergel C, Suhre K, Fournier PE (2006) Mimivirus and the emerging concept of “giant” virus. Virus Res 117:133–144

    PubMed  CAS  Google Scholar 

  • Clements A, Bursac D, Gatsos X, Perry A, Civciristov S et al (2009) The reducible complexity of a mitochondrial molecular machine. Proc Natl Acad Sci USA 106:15791–15795

    PubMed  CAS  Google Scholar 

  • Clouet d’Orval B, Bortolin ML, Gaspin C, Bachellerie JP (2001) Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 29:4518–4529

    PubMed  Google Scholar 

  • Cody GC (2005) Geochemical connections to primitive metabolism. Elements 1:139–143

    CAS  Google Scholar 

  • Colgate SA, Rasmussen S, Solem JC (2003) An astrophysical basis for a universal origin of life. Adv Compl Syst 6:487–505

    Google Scholar 

  • Collins L, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066

    PubMed  CAS  Google Scholar 

  • Collins LJ, Penny D (2009) The RNA infrastructure: dark matter of the eukaryotic cell? Trends Genet 25:120–128

    PubMed  CAS  Google Scholar 

  • Collins LJ, Kurland CG, Biggs P, Penny D (2009) The modern RNP world of eukaryotes. J Hered 100:597–604

    PubMed  CAS  Google Scholar 

  • Condie KC, Pease V (eds) (2008) When did plate tectonics begin on planet Earth? GSA Special Papers v. 440, Geological Society of America, Boulder CO

    Google Scholar 

  • Conrad M (1990) The geometry of evolution. Biosystems 24:61–81

    PubMed  CAS  Google Scholar 

  • Copertino DW, Hallick RB (1993) Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem Sci 18:467–471

    PubMed  CAS  Google Scholar 

  • Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443

    PubMed  CAS  Google Scholar 

  • Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM (2008) The archaebacterial origin of eukaryotes. Proc Natl Acad Sci USA 105:20356–20361

    PubMed  CAS  Google Scholar 

  • Csürös M, Rogozin IB, Koonin EV (2008) Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol Biol Evol 25:903–911

    PubMed  Google Scholar 

  • Czárán T, Szathmáry E (2000) Coexistence of metabolically co-operating replicators in a cellular automaton: the importance of space without mesoscopic structure. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, pp 116–134

    Google Scholar 

  • Dagan T, Martin W (2006) The tree of one percent. Genome Biol 7:118

    PubMed  Google Scholar 

  • Dance I (2010) Mimicking nitrogenase. Dalton Trans 39:2972–2983

    PubMed  CAS  Google Scholar 

  • Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324–328

    PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • David LA, Alm EJ (2010) Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96

    PubMed  Google Scholar 

  • Davidovich C, Belousoff M, Bashan A, Yonath A (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 160:487–492

    PubMed  CAS  Google Scholar 

  • Davis BD (1958) On the importance of being ionized. Arch Biochem Biophys 78:497–509

    PubMed  CAS  Google Scholar 

  • Davis BK (1999) Evolution of the genetic code. Prog Biophys Mol Biol 72:157–243

    PubMed  CAS  Google Scholar 

  • Dawson TR, Lazarus MD, Hetzer MW, Wente SR (2009) ER membrane-bending proteins are necessary for de novo nuclear pore formation. J Cell Biol 184:659–675

    PubMed  CAS  Google Scholar 

  • Deamer D, Weber AL (2010) Bioenergetics and life’s origins. Cold Spring Harb Perspect Biol 2:a004929

    PubMed  Google Scholar 

  • Deamer DW, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002) The first cell membranes. Astrobiology 2:371–382

    PubMed  CAS  Google Scholar 

  • Deamer D, Singaram S, Rajamani S, Kompanichenko V, Guggenheim S (2006) Self-assembly processes in the prebiotic environment. Phil Trans Roy Soc 361:1809–1818

    CAS  Google Scholar 

  • de Duve C (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proc Natl Acad Sci USA 84:8253–8256

    PubMed  Google Scholar 

  • de Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson, Burlington

    Google Scholar 

  • de Duve C (1998) Clues from present-day biology: the thioester world. In: Brack A (ed) The molecular origins of life. Cambridge University Press, Cambridge, pp 219–236

    Google Scholar 

  • de Duve C (2003) A research proposal on the origin of life. Orig Life Evol Biosph 33:559–574

    PubMed  Google Scholar 

  • Delarue M (1995) Partition of aminoacyl-tRNA synthetases in two different structural classes dating back to early metabolism: implications for the origin of the genetic code and the nature of protein sequences. J Mol Evol 41:703–711

    PubMed  CAS  Google Scholar 

  • Denis C, Schreider AA, Varga P, Zavoti J (2002) Despinning of the Earth rotation in the geological past and geomagnetic paleointensities. J Geodyn 34:667–685

    Google Scholar 

  • Dennis PP, Omer A (2005) Small non-coding RNAs in archaea. Curr Opin Microbiol 8:685–694

    PubMed  CAS  Google Scholar 

  • de Nooijer S, Holland BR, Penny D (2009) The emergence of predators in early life: there was no Garden of Eden. PLoS ONE 4:e5507

    PubMed  Google Scholar 

  • de Roos ADG (2005) Origins of introns based on the definition of exon modules and their conserved interfaces. Bioinformatics 21:2–9

    PubMed  Google Scholar 

  • de Roos ADG (2006) The origin of the eukaryotic cell based on conservation of existing interfaces. Artif Life 12:513–523

    PubMed  Google Scholar 

  • de Roos AD (2007) Conserved intron positions in ancient protein modules. Biol Direct 2:7

    PubMed  Google Scholar 

  • Dieci G, Preti M, Montanini B (2009) Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94:83–88

    PubMed  CAS  Google Scholar 

  • Di Giulio M (1995) Was it an ancient gene codifying for a hairpin RNA that, by means of direct duplication, gave rise to the primitive tRNA molecule? J Theor Biol 177:95–101

    PubMed  Google Scholar 

  • Di Giulio M (1999) The non-monophyletic origin of the tRNA molecule. J Theor Biol 197:403–414

    PubMed  Google Scholar 

  • Doherty EA, Doudna JA (2000) Ribozyme structures and mechanisms. Annu Rev Biochem 69:597–615

    PubMed  CAS  Google Scholar 

  • Donovan J, Copeland PR (2010) Threading the needle: getting selenocysteine into proteins. Antioxid Redox Signal 12:881–892

    PubMed  CAS  Google Scholar 

  • Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582

    Google Scholar 

  • Doolittle WF (1980) Revolutionary concepts in evolutionary cell biology. Trends Biochem Sci 5:147–149

    Google Scholar 

  • Doolittle WF (2010) The attempt on the life of the tree of life: science, philosophy and politics. Biol Philos 25:455–473

    Google Scholar 

  • Dorit RL, Schoenbacher L, Gilbert W (1990) How big is the universe of exons? Science 250:1377–1382

    PubMed  CAS  Google Scholar 

  • Doudna JA, Lorsch JR (2005) Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 12:395–402

    PubMed  CAS  Google Scholar 

  • Dougherty EC (1955) Comparative evolution and the origin of sexuality. Syst Zool 4:145–169

    Google Scholar 

  • Duan J, Li L, Lu J, Wang W, Ye K (2009) Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 34:427–439

    PubMed  CAS  Google Scholar 

  • Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11:512–524

    PubMed  CAS  Google Scholar 

  • Dyson F (1985) Origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366

    PubMed  CAS  Google Scholar 

  • Egel R (2009) Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. Bioessays 31:1100–1109

    PubMed  CAS  Google Scholar 

  • Eigen M (1971) Molecular self-organization and the early stages of evolution. Q Rev Biophys 4:149–212

    PubMed  CAS  Google Scholar 

  • Eigen M (1993) The origin of genetic information: viruses as models. Gene 135:37–47

    PubMed  CAS  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA, an early gene? Naturwissenschaften 68:282–292

    PubMed  CAS  Google Scholar 

  • Eigen M, Lindemann B, Winkler-Oswatitsch R, Clarke CH (1985) Pattern analysis of 5 S rRNA. Proc Natl Acad Sci USA 82:2437–2441

    PubMed  CAS  Google Scholar 

  • Ellis JC, Brown JW (2009) The RNase P family. RNA Biol 6:362–369

    PubMed  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    PubMed  CAS  Google Scholar 

  • Emiliani G, Fondi M, Liò P, Fani R (2010) Evolution of metabolic pathways and evolution of genomes. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology, molecular and environmental perspective. Springer, Dordrecht, pp 37–68

    Google Scholar 

  • Eschenmoser A (2007) The search for the chemistry of life’s origin. Tetrahedron 63:12821–12844

    CAS  Google Scholar 

  • Fedorov A, Fedorova L (2004) Introns: mighty elements from the RNA world. J Mol Evol 59:718–721

    PubMed  CAS  Google Scholar 

  • Ferris JP (2006) Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos Trans R Soc Lond B Biol Sci 361:1777–1786

    PubMed  CAS  Google Scholar 

  • Ferris JP, Hill A Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    PubMed  CAS  Google Scholar 

  • Findley GL, Findley AM, McGlynn SP (1982) Symmetry characteristics of the genetic code. Proc Natl Acad Sci USA 79:7061–7065

    PubMed  CAS  Google Scholar 

  • Fiscus DA (2002) The ecosystemic life hypothesis III: the hypothesis and its implications. Bull Ecol Soc Am 83:46–149

    Google Scholar 

  • Fishkis M (2007) Steps towards the formation of a protocell: the possible role of short peptides. Orig Life Evol Biosph 37:537–553

    PubMed  CAS  Google Scholar 

  • Fitz D, Reiner H, Plankensteiner K, Rode BM (2007) Possible origins of biohomochirality. Curr Chem Biol 1:41–52

    CAS  Google Scholar 

  • Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T (2007) Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J 407:1–13

    PubMed  CAS  Google Scholar 

  • Fondi M, Emiliani G, Fani R (2009) Origin and evolution of operons and metabolic pathways. Res Microbiol 160:502–512

    PubMed  CAS  Google Scholar 

  • Fournier GP, Dick AA, Williams D, Gogarten JP (2011) Evolution of the archaea: emerging views on origins and phylogeny. Res Microbiol 162:92–98

    PubMed  CAS  Google Scholar 

  • Forterre P (1995) Thermoreduction, a hypothesis for the origin of prokaryotes. C R Acad Sci Paris 318:415–422

    PubMed  CAS  Google Scholar 

  • Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    PubMed  CAS  Google Scholar 

  • Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16

    PubMed  CAS  Google Scholar 

  • Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40:151–160

    PubMed  Google Scholar 

  • Forterre P, Gribaldo S (2010) Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proc Natl Acad Sci USA 107:12739–12740

    PubMed  CAS  Google Scholar 

  • Forterre P, Philippe H (1999) Where is the root of the universal tree of life? Bioessays 21:871–879

    PubMed  CAS  Google Scholar 

  • Forterre P, Benachenhou-Lahfa N, Confalonieri F, Duguet M, Elie C, Labedan B (1992) The nature of the last universal ancestor and the root of the tree of life, still open questions. Biosystems 28:15–32

    PubMed  CAS  Google Scholar 

  • Fox GE (2010) Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol 2:a003483

    PubMed  Google Scholar 

  • Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299–328

    PubMed  CAS  Google Scholar 

  • Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 88:8184–8188

    PubMed  CAS  Google Scholar 

  • Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP (2007) Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32:63–70

    PubMed  CAS  Google Scholar 

  • Garfinkel DJ (2005) Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 110:63–69

    PubMed  CAS  Google Scholar 

  • Gayon J (2010) Defining life: synthesis and conclusions. Orig Life Evol Biosph 40:231–244

    PubMed  Google Scholar 

  • Gesteland RF, Cech TR, Atkins JF (eds) (2006) The RNA World: The nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Giegé R (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014

    PubMed  Google Scholar 

  • Giegé R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26:5017–5035

    PubMed  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Google Scholar 

  • Gilbert W, de Souza SJ, Long M (1997) Origin of genes. Proc Natl Acad Sci 94:7698–7703

    PubMed  CAS  Google Scholar 

  • Gindulyte A, Bashan A, Agmon I, Massa L, Yonath A, Karle J (2006) The transition state for formation of the peptide bond in the ribosome. Proc Natl Acad Sci USA 103:13327–13332

    PubMed  CAS  Google Scholar 

  • Gladyshev GP (1999) On thermodynamics, entropy and evolution of biological systems: what is life from a physical chemist’s viewpoint? Entropy 1:9–20

    CAS  Google Scholar 

  • Glansdorff N (1999) On the origin of operons and their possible role in evolution toward thermophily. J Mol Evol 49:432–438

    PubMed  CAS  Google Scholar 

  • Glansdorff N (2000) About the last common ancestor, the universal lifetree and lateral gene transfer: a reappraisal. Mol Microbiol 38:177–185

    PubMed  CAS  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29

    PubMed  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2009a) The origin of life and the last universal common ancestor: do we need a change of perspective? Res Microbiol 160:522–528

    PubMed  CAS  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2009b) The conflict between horizontal gene transfer and the safeguard of identity: origin of meiotic sexuality. J Mol Evol 9:470–480

    Google Scholar 

  • Goldman AD, Samudrala R, Baross JA (2010) The evolution and functional repertoire of translation proteins following the origin of life. Biol Direct 5:15

    PubMed  Google Scholar 

  • Golubić S, Violante C, Plenković-Moraj A, Grgasović T (2008) Travertines and calcareous tufa deposits: an insight into diagenesis. Geol Croat 61:363–378

    Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469

    PubMed  CAS  Google Scholar 

  • Gribaldo S, Forterre P (2005) Looking for the most ‘primitive’ life forms: pitfalls and progresses. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology, vol I, Adv Astrobiol Biogeophys. Springer, Berlin Heidelberg, pp 595–615

    Google Scholar 

  • Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C (2010) The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 8:743–752

    PubMed  CAS  Google Scholar 

  • Griffiths G (2007) Cell evolution and the problem of membrane topology. Nat Rev Mol Cell Biol 8:1018–1024

    PubMed  CAS  Google Scholar 

  • Gross J, Meurer J, Bhattacharya D (2008) Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. BMC Evol Biol 8:117

    PubMed  Google Scholar 

  • Grzybowski BA, Bishop KJM, Kowalczyk B, Wilmer CE (2009) The ‘wired’ universe of organic chemistry. Nat Chem 1:31–36

    PubMed  CAS  Google Scholar 

  • GtRNAdb (2010) The genomic tRNA database. http://gtrnadb.ucsc.edu/.Accessed 20 Dec 2010

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    PubMed  CAS  Google Scholar 

  • Günzl A (2010) The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot Cell 9:1159–1170

    PubMed  Google Scholar 

  • Güttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10:178–191

    PubMed  Google Scholar 

  • Guzman MI, Martin ST (2009) Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9:833–842

    PubMed  CAS  Google Scholar 

  • Haeckel EHPA (1866) Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. G. Reimer, Berlin

    Google Scholar 

  • Hagan WJ (2010) Uracil-catalyzed synthesis of acetyl phosphate: a photochemical driver for protometabolism. Chembiochem 11:383–387

    PubMed  CAS  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    PubMed  CAS  Google Scholar 

  • Haken H (1983) Synergetics: an introduction, vol Nonequilibrium phase transitions and self-organization in physics, chemistry and biology, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • Haken H (2006) Information and self-organization, 3rd edn, A macroscopic approach to complex systems. Springer, Heidelberg

    Google Scholar 

  • Hamma T, Ferré-D’Amaré AR (2006) Pseudouridine synthases. Chem Biol 13:1125–1135

    PubMed  CAS  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    PubMed  CAS  Google Scholar 

  • Hanczyc MM, Mansy SS, Szostak JW (2007) Mineral surface directed membrane assembly. Orig Life Evol Biosph 37:67–82

    PubMed  CAS  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    PubMed  CAS  Google Scholar 

  • Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99:1420–1425

    PubMed  CAS  Google Scholar 

  • Hausmann CD, Ibba M (2008) Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 32:705–721

    PubMed  CAS  Google Scholar 

  • Hazen RM (2005) Genesis: the scientific quest for life’s origins. Joseph Henry Press, National Academy of Sciences, Washington

    Google Scholar 

  • Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2:a002162

    PubMed  Google Scholar 

  • Henderson-Sellers A (1981) The Earth’s environment – a uniquely stable system? Geophys Surv 4:297–329

    Google Scholar 

  • Hengeveld R (2010) Definitions of life are not only unnecessary, but they can do harm to understanding. Found Science, Springer Online First, DOI: 10.1007/s10699-010-9208-5

    Google Scholar 

  • Hirt RP, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585

    PubMed  CAS  Google Scholar 

  • Ho MW, Ulanowicz R (2005) Sustainable systems as organisms? Biosystems 82:39–51

    PubMed  Google Scholar 

  • Hoelzer GA, Smith E, Pepper JW (2006) On the logical relationship between natural selection and self-organization. J Evol Biol 19:1785–1794

    PubMed  CAS  Google Scholar 

  • Hoeppner MP, White S, Jeffares DC, Poole AM (2009) Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol Evol 1:420–428

    PubMed  CAS  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc Lond B Biol Sci 361:903–915

    CAS  Google Scholar 

  • Hordijk W, Hein J, Steel M (2010) Autocatalytic sets and the origin of life. Entropy 12:1733–1742

    CAS  Google Scholar 

  • Horowitz NH, Miller SL (1962) Current theories on the origin of life. Fortschr Chem Org Naturst 20:423–459

    PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2008) Genome size reduction in the chicken has involved massive loss of ancestral protein-coding genes. Mol Biol Evol 25:2681–2688

    PubMed  CAS  Google Scholar 

  • Iborra FJ (2007) Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation? Theor Biol Med Model 12:4–15

    Google Scholar 

  • Inoue R, Kunze E, Laurent LS, Schmitt R, Toole J (2008) Evaluating saltfingering theories. J Mar Res 66:413–440

    Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    CAS  Google Scholar 

  • Jagers op Akkerhuis, Gerard AJM (2010) Towards a hierarchical definition of life, the organism, and death. Found Sci 15:245–262

    Google Scholar 

  • Järnström L, Lason L, Rigdahl M, Eriksson U (1995) Flocculation in kaolin suspensions induced by modified starches 2. Oxidized and hydrophobically modified oxidized starch in comparison with poly (vinyl alcohol) and carboxymethylcellulose. Colloids Surf A 104:207–216

    Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    PubMed  CAS  Google Scholar 

  • Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36

    PubMed  CAS  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22

    PubMed  CAS  Google Scholar 

  • Jones MR (2009) Bacterial Photosynthesis. In: Smith KC (ed) Photobiological sciences online, American Society for Photobiology. http://www.photobiology.info/Jones.html

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    PubMed  CAS  Google Scholar 

  • Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14

    PubMed  CAS  Google Scholar 

  • Kamber BS (2007) The enigma of the terrestrial protocrust: evidence for its former existence and the importnce of its complete disappearance. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) The Earth’s oldest rocks. Elsevier, Amsterdam, pp 75–90

    Google Scholar 

  • Kandler O (1994a) The early diversification of life. In: Bengtson S (ed) Early life on Earth: Nobel Symposium 84. Columbia University Press, New York, pp 152–160

    Google Scholar 

  • Kandler O (1994b) Cell wall biochemistry in Archaea and its phylogenetic implications. J Biol Phys 20:165–169

    CAS  Google Scholar 

  • Kandler O (1994c) Cell wall biochemistry and three-domain concept of life. Syst Appl Microbiol 16:501–509

    CAS  Google Scholar 

  • Kant I (1790/1977) Kritik der Urteilskraft § 65. Dinge, als Naturzwecke, sind organisierte Wesen. In: Weischedel W (ed) Kant I, Werke in zwölf Bänden, vol 10. Suhrkamp, Frankfurt am Main, pp 319–324

    Google Scholar 

  • Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Phil Trans R Soc Lond B Biol Sci 361:917–929

    CAS  Google Scholar 

  • Kauffman SA (1993) The origin of order: self-organization and selection in evolution. Oxford University Press, London

    Google Scholar 

  • Kiss T, Fayet-Lebaron E, Jady BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37:97–606

    Google Scholar 

  • Kazantsev AV, Pace NR (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4:729–740

    PubMed  CAS  Google Scholar 

  • Keeling PJ (2003) Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol 38:298–309

    PubMed  CAS  Google Scholar 

  • Keller EF (2008) Organisms, machines, and thunderstorms: a history of self-organization I. Hist Stud Nat Sci 38:45–75

    Google Scholar 

  • Keller EF (2009) Organisms, machines, and thunderstorms: a history of self-organization II. Complexity, emergence, and stable attractors. Hist Stud Nat Sci 39:1–31

    Google Scholar 

  • Kikuchi G, Kumar A, Talmage D, Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 223:1214–1219

    Google Scholar 

  • Kluger R, Loo RW, Mazza V (1997) Biomimetically activated amino acids. Catalysis in the hydrolysis of alanyl ethyl phosphate. J Am Chem Soc 119:12089–12094

    CAS  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 24:241–247

    PubMed  CAS  Google Scholar 

  • Koch AL (1984) Evolution vs the number of gene copies per primitive cell. J Mol Evol 20:71–76

    PubMed  CAS  Google Scholar 

  • Koch AL, Schmidt TM (1991) The first cellular bioenergetic process: primitive generation of a proton-motive force. J Mol Evol 33:297–304

    PubMed  CAS  Google Scholar 

  • Koga Y, Morii H (2007) Biosynthesis of ether-type polar lipids in Archaea and evolutionary considerations. Microbiol Mol Biol Rev 71:97–120

    PubMed  CAS  Google Scholar 

  • Koonin EV (2006a) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22

    PubMed  Google Scholar 

  • Koonin EV (2006b) Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases. Biol Direct 1:39

    PubMed  Google Scholar 

  • Koonin EV (2007) An RNA-making reactor for the origin of life. Proc Natl Acad Sci USA 104:9105–9106

    PubMed  CAS  Google Scholar 

  • Koonin EV (2009) On the origin of cells and viruses: primordial virus world scenario. Ann NY Acad Sci 1178:47–64

    PubMed  CAS  Google Scholar 

  • Koonin EV (2010) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11:209

    PubMed  Google Scholar 

  • Koonin EV, Aravind L (1998) Genomics: re-evaluation of translation machinery evolution. Curr Biol 8:R266–R269

    PubMed  CAS  Google Scholar 

  • Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111

    PubMed  CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29

    PubMed  Google Scholar 

  • Kooter JM, de Lange T, Borst P (1984) Discontinuous synthesis of mRNA in trypanosomes. EMBO J 3:2387–2392

    PubMed  CAS  Google Scholar 

  • Kritsky M, Telegina T (2005) Role of nucleotide-like coenzymes in primitive evolution. In: Seckbach J (ed) Origins: cellular origin, life in extreme habitats and astrobiology. Kluwer Academic Publishers, Dordrecht, pp 215–231

    Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    PubMed  CAS  Google Scholar 

  • Kurland CG (2010) The RNA dreamtime. Bioessays 32:866–871

    PubMed  CAS  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014

    PubMed  CAS  Google Scholar 

  • Lake JA, Rivera MC (1994) Was the nucleus the first endosymbiont? Proc Natl Acad Sci USA 91:2880–2881

    PubMed  CAS  Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81:3786–3790

    PubMed  CAS  Google Scholar 

  • Lambert J (2008) Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242

    PubMed  CAS  Google Scholar 

  • Lambowitz AM, Zimmerly S (2010) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol. doi:10.1101.cshperspect.a003616

  • Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32:271–280

    PubMed  CAS  Google Scholar 

  • Lathe R (2004) Fast tidal cycling and the origin of life. Icarus 168:18–22

    CAS  Google Scholar 

  • Lazcano A (1994) The transition from nonliving to living. In: Bengtson S (ed) Early life on Earth, Nobel Symposium No. 84. Columbia Univ Press, New York, pp 60–69

    Google Scholar 

  • Lazcano A (2010) Historical development of origins research. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a002089

  • Lazcano A, Forterre P (eds) (1999) The last universal common ancestor and beyond. Proceedings of a workshop. France 1996. J Mol Evol 49(4):411–537

    Google Scholar 

  • Lee Y, Chan SI (1977) Effect of lysolecithin on the structure and permeability of lecithin bilayer vescicles. Biochemistry 16:1303–1309

    PubMed  CAS  Google Scholar 

  • Lee B, Matera AG, Ward DC, Craft J (1996) Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA 93:11471–11476

    PubMed  CAS  Google Scholar 

  • Lee DH, Severin K, Ghadiri MR (1997) Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems. Curr Opin Chem Biol 1:491–496

    PubMed  CAS  Google Scholar 

  • Lehman N (2003) A case for the extreme antiquity of recombination. J Mol Evol 56:770–777

    PubMed  CAS  Google Scholar 

  • Lehman N (2008) A recombination-based model for the origin and early evolution of genetic information. Chem Biodivers 5:1707–1717

    PubMed  CAS  Google Scholar 

  • Lehman N, Unrau PJ (2005) Recombination during in vitro evolution. J Mol Evol 61:245–252

    PubMed  CAS  Google Scholar 

  • Lewalle J (2008) Self-organization in Navier-Stokes turbulence. In: Minai AA, Bar-Yam Y (eds) Unifying themes in complex systems IV. Springer, Heidelberg, pp 51–58

    Google Scholar 

  • Li L, Ye K (2006) Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443:302–307

    PubMed  CAS  Google Scholar 

  • Lindahl L, Zengel JM (1996) RNase MRP and rRNA processing. Mol Biol Rep 22:69–73

    CAS  Google Scholar 

  • Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 107:12883–12888

    PubMed  CAS  Google Scholar 

  • Lu Q, Wierzbicki S, Krasilnikov AS, Schmitt ME (2010) Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components. RNA 16:529–537

    PubMed  CAS  Google Scholar 

  • Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622

    PubMed  CAS  Google Scholar 

  • Lunine JI (2006) Physical conditions on the early Earth. Phil Trans R Soc Lond B Biol Sci 361:1721–1731

    CAS  Google Scholar 

  • Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349

    PubMed  CAS  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91:6729–6734

    PubMed  CAS  Google Scholar 

  • Maizels N, Weiner AM (1999) The genomic tag hypothesis: what molecular fossils tell us about the evolution of tRNA. In: Gesteland RF, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbour Laboratory Press, NY, pp 79–111

    Google Scholar 

  • Mandelbrot BB (1977/1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Martin W (2005) Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 8:630–637

    PubMed  CAS  Google Scholar 

  • Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentation. Nature 440:41–45

    PubMed  CAS  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans R Soc Lond B Biol Sci 362:1887–1925

    CAS  Google Scholar 

  • Martin P, van Hunen J, Parman S, Davidson J (2008) Why does plate tectonics occur only on Earth? Phys Educ 43:144; doi:10.1088/0031-9120/43/2/002

    Google Scholar 

  • Matsumi R, Atomi H, Driessen AJM, van der Oost J (2011) Isoprenoid biosynthesis in Archaea – biochemical and evolutionary implications. Res Microbiol 162:39–52

    PubMed  CAS  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Freeman, Oxford

    Google Scholar 

  • Meléndez-Hevia E, Montero-Gómez N, Montero F (2008) From prebiotic chemistry to cellular metabolism – the chemical evolution of metabolism before Darwinian natural selection. J Theor Biol 252:505–519

    PubMed  Google Scholar 

  • Meunier A, Petit S, Cockell CS, El Albani A, Beaufort D (2010) The Fe-rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean eon. Orig Life Evol Biosph 40:253–272

    PubMed  CAS  Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns – a review. Gene 82:5–30

    PubMed  CAS  Google Scholar 

  • Michel F, Costa M, Westhof E (2009) The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 34:189–199

    PubMed  CAS  Google Scholar 

  • Miller SL, Schlesinger G (1993) Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantethenic acid and composition of coenzyme A. J Mol Evol 36:308–314

    PubMed  CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2005) Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig Life Evol Biosph 35:19–27

    PubMed  CAS  Google Scholar 

  • Minajigi A, Francklyn CS (2008) RNA-assisted catalysis in a protein enzyme: the 2′-hydroxyl of tRNAThr A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc Natl Acad Sci USA 105:17748–17753

    PubMed  CAS  Google Scholar 

  • Mittenhuber G (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3:1–20

    PubMed  CAS  Google Scholar 

  • Moeller W, Janssen GMC (1992) Statistical evidence for remnants of the primordial code in the acceptor stem of prokaryotic transfer RNA. J Mol Evol 34:471–477

    Google Scholar 

  • Moore MJ, Sharp PA (1993) Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365:364–368

    PubMed  CAS  Google Scholar 

  • Moreira D, López-García P (2007) The last common ancestor of modern cells. In: Gargaud M, Martin H, Claeys P (eds) Lectures in astrobiology, vol II, Adv Astrobiol Biogeophys. Springer, Berlin Heidelberg, pp 305–317

    Google Scholar 

  • Morowitz HJ (1999) A theory of biochemical organization, metabolic pathways, and evolution. Complexity 4:39–53

    Google Scholar 

  • Morowitz HJ, Smith E (2007) Energy flow and the organization of life. Complexity 13:51–59

    Google Scholar 

  • Morowitz HJ, Kostelnik JD, Yang J, Cody GD (2000) The origin of intermediary metabolism. Proc Natl Acad Sci USA 97:7704–7708

    PubMed  CAS  Google Scholar 

  • Morowitz HJ, Smith E, Srinivasan V (2008) Selfish metabolism. Complexity 14:7–9

    Google Scholar 

  • Morowitz HJ, Srinivasan V, Smith E (2010) Ligand field theory and the origin of life as an emergent feature of the periodic table of elements. Biol Bull 219:1–6

    PubMed  CAS  Google Scholar 

  • Morse JM, Mackenzie FT (1998) Hadean ocean carbonate geochemistry. Aquat Geochem 4:301–319

    CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    PubMed  CAS  Google Scholar 

  • Mulkidjanian AY (2009) Origin of life in the Zinc World. 1. Photosynthetic, porous edifices built of hydrothermally precipitated zinc sulfide (ZnS) as cradles of life on Earth. Biol Direct 4:26

    PubMed  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2009) On the origin of life in the Zinc World. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4:27

    PubMed  Google Scholar 

  • Murat D, Byrne M, Komeili A (2010) Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol 2:a000422

    PubMed  Google Scholar 

  • Nazar RN (2004) Ribosomal RNA processing and ribosome biogenesis in eukaryotes. IUBMB Life 56:457–465

    PubMed  CAS  Google Scholar 

  • Nikalje MO, Phukan P, Sudalai A (2000) Recent advances in clay-catalyzed organic transformations. Org Prep Proced 32:1–40

    CAS  Google Scholar 

  • Nilsen TW (2003) The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25:1147–1149

    PubMed  Google Scholar 

  • Nucci NV, Pometun MS, Wand AJ (2011) Site-resolved measurement of water-protein interactions by solution NMR. Nat Struct Mol Biol. doi:10.1038/nsmb.1955

  • O’Donoghue P, Sethi A, Woese CR, Luthey-Schulten ZA (2005) The evolutionary history of Cys–tRNACys formation. Proc Natl Acad Sci USA 102:19003–19008

    PubMed  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    PubMed  CAS  Google Scholar 

  • O’Malley MA, Martin W, Dupre J (2010) The tree of life: introduction to an evolutionary debate. Biol Philos 25:441–453

    Google Scholar 

  • Orgel LE (1989) The origin of polynucleotide-directed protein synthesis. J Mol Evol 29:465–474

    PubMed  CAS  Google Scholar 

  • Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 6:e18

    PubMed  Google Scholar 

  • Pace NR (2006) Time for a change. Nature 441:289

    PubMed  CAS  Google Scholar 

  • Parenteau J, Durand M, Véronneau S, Lacombe AA, Morin G et al (2008) Deletion of many yeast introns reveals a minority of genes that require splicing for function. Mol Biol Cell 19:1932–1941

    PubMed  CAS  Google Scholar 

  • Patel HH, Insel PA (2009) Lipid rafts and caveolae and their role in compartmentation of redox Signaling. Antioxid Redox Signal 11:1357–1372

    PubMed  CAS  Google Scholar 

  • Patthy L (1999) Genome evolution and the evolution of exon-shuffling – a review. Gene 238:103–114

    PubMed  CAS  Google Scholar 

  • Peacocke AR (1983) An introduction to the physical chemistry of biological organization. Clarendon, Oxford

    Google Scholar 

  • Penny D (2005) An interpretative review of the origin of life research. Biol Philos 20:633–671

    Google Scholar 

  • Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9:672–677

    PubMed  CAS  Google Scholar 

  • Penny D, Hoeppner MP, Poole AM, Jeffares DC (2009) An overview of the introns-first theory. J Mol Evol 69:527–540

    PubMed  CAS  Google Scholar 

  • Penzlin H (2009) The riddle of “life,” a biologist’s critical view. Naturwissenschaften 96:1–23

    PubMed  CAS  Google Scholar 

  • Peretó J (2005) Controversies on the origin of life. Int Microbiol 8:23–31

    PubMed  Google Scholar 

  • Peretó J, López-Garcıa P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 29:469–477

    PubMed  Google Scholar 

  • Perry RS, Kolb VM (2004) On the applicability of Darwinian principles to chemical evolution that led to life. Int J Astrobiol 3:45–53

    CAS  Google Scholar 

  • Philippe H, Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49:509–523

    PubMed  CAS  Google Scholar 

  • Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597

    Google Scholar 

  • Pizzarello S, Weber AL (2010) Stereoselective syntheses of pentose sugars under realistic prebiotic conditions. Orig Life Evol Biosph 40:3–10

    PubMed  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2005) Prebiotic chemistry: the amino acid and peptide world. Curr Org Chem 9:1107–1114

    CAS  Google Scholar 

  • Pollack GH, Cameron IL, Wheatley DN (eds) (2006) Water and the cell. Springer, Heidelberg

    Google Scholar 

  • Poole AM (2006) Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes? Biol Direct 1:36

    PubMed  Google Scholar 

  • Poole A (2010) Eukaryote evolution: the importance of the stem group. In: Caetano-Anollés G (ed) Evolutionary genomics and systems biology. Wiley-Blackwell, Hoboken NJ pp 63–80

    Google Scholar 

  • Poole AM, Neumann N (2011) Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162:71–76

    PubMed  Google Scholar 

  • Poole A, Penny D (2007a) Eukaryote evolution: engulfed by speculation. Nature 447:913

    PubMed  CAS  Google Scholar 

  • Poole AM, Penny D (2007b) Evaluating hypotheses for the origin of eukaryotes. Bioessays 29:74–84

    PubMed  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    PubMed  CAS  Google Scholar 

  • Poole A, Jeffares D, Penny D (1999) Early evolution: prokaryotes, the new kids on the block. Bioessays 21:880–889

    PubMed  CAS  Google Scholar 

  • Poole A, Penny D, Sjöberg BM (2000) Methyl-RNA: an evolutionary bridge between RNA and DNA? Chem Biol 7:R207–R216

    PubMed  CAS  Google Scholar 

  • Poole A, Penny D, Sjöberg BM (2001) Confounded cytosine! Tinkering and the evolution of DNA. Nat Rev Mol Cell Biol 2:147–151

    PubMed  CAS  Google Scholar 

  • Poole AM, Phillips MJ, Penny D (2003) Prokaryote and eukaryote evolvability. Biosystems 69:163–185

    PubMed  CAS  Google Scholar 

  • Popa R (2004) Between chance and necessity: searching for the definition and origin of life. Springer, Heidelberg

    Google Scholar 

  • Popa R (2010) Necessity, futility and the possibility of defining life are all embedded in its origin as a punctuated-gradualism. Orig Life Evol Biosph 40:183–190

    PubMed  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    PubMed  CAS  Google Scholar 

  • Prigogine I (1978) Time, structure and fluctuations. Science 201:777–785

    PubMed  CAS  Google Scholar 

  • Prigogine I, Lefever R (1968) Symmetry-breaking instabilities in dissipative systems. J Chem Phys 48:1695–1700

    Google Scholar 

  • Prigogine I, Nicolis G (1967) On symmetry-breaking instabilities in dissipative systems. J Chem Phys 46:3542–3550

    CAS  Google Scholar 

  • Puigbò P, Wolf YI, Koonin EV (2009) Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8:59

    PubMed  Google Scholar 

  • Puigbò P, Wolf YI, Koonin EV (2010) The tree and net components of prokaryote evolution. Genome Biol Evol 2:745–756

    PubMed  Google Scholar 

  • Pulselli RM, Simoncini E, Tiezzi E (2009) Self-organization in dissipative structures: a thermodynamic theory for the emergence of prebiotic cells and their epigenetic evolution. Biosystems 96:237–241

    PubMed  CAS  Google Scholar 

  • Puttaraju M, Perrotta AT, Been MD (1993) A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res 21:4253–4258

    PubMed  CAS  Google Scholar 

  • Raoult D, Forterre P (2008) Redefining viruses: lessons from mimivirus. Nat Rev Microbiol 6:315–319

    PubMed  CAS  Google Scholar 

  • Raulin-Cerceau F (2004) Historical review on the origin of life and astrobiology. In: Seckbach J (ed) Origins: genesis, evolution and the diversity of life. Kluwer Academic Publishers, Dordrecht, pp 15–33

    Google Scholar 

  • Reanney DC (1974) On the origin of prokaryotes. J Theor Biol 48:243–251

    PubMed  CAS  Google Scholar 

  • Reanney DC (1986) Genetic error and genome design. Trends Genet 2:41–46

    CAS  Google Scholar 

  • Reaxys (2010) How does Reaxys differ from CrossFire Commander? https://www.reaxys.com/info/node/65 Accessed 27 Sep 2010

  • Reichow SL, Hamma T, Ferré-D’Amaré AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464

    PubMed  CAS  Google Scholar 

  • Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragón A (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468:784–789

    PubMed  CAS  Google Scholar 

  • Ribas de Pouplana L, Schimmel P (2001) Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191–193

    PubMed  CAS  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196

    PubMed  CAS  Google Scholar 

  • Riguzzi F, Panza G, Varga P, Doglioni C (2010) Can Earth’s rotation and tidal despinning drive plate tectonics? Tectonophysics 484:60–73

    Google Scholar 

  • Rippe K (2007) Dynamic organization of the cell nucleus. Curr Opin Genet Dev 17:373–380

    PubMed  CAS  Google Scholar 

  • Ritchie DB, Schellenberg MJ, Macmillan AM (2009) Spliceosome structure: piece by piece. Biochim Biophys Acta 1789:624–633

    PubMed  CAS  Google Scholar 

  • Robertson MP, Joyce GF (2010) The origins of the RNA World. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003608

  • Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786

    PubMed  CAS  Google Scholar 

  • Rodin SN, Rodin AS (2008) On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100:341–355

    PubMed  CAS  Google Scholar 

  • Rodin AS, Szathmary E, Rodin SN (2009) One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation. Biol Direct 4:4

    PubMed  Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A (1997) Fractal river basins: chance and self-organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    PubMed  CAS  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland – indications of N3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    CAS  Google Scholar 

  • Roy SW (2006) Intron-rich ancestors. Trends Genet 22:468–471

    PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2005) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102:5773–5778

    PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    PubMed  Google Scholar 

  • Roy SW, Irimia M (2009) Splicing in the eukaryotic ancestor: form, function and dysfunction. Trends Ecol Evol 24:447–455

    PubMed  Google Scholar 

  • Ruiz-Mirazo K, Pereto J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosph 34:323–346

    PubMed  CAS  Google Scholar 

  • Russell AG, Charette JM, Spencer DF, Gray MW (2006) An early evolutionary origin for the minor spliceosome. Nature 443:863–866

    PubMed  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402

    CAS  Google Scholar 

  • Salthe S (2004) The spontaneous origin of new levels in a scalar hierarchy. Entropy 6:327–343

    Google Scholar 

  • Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281

    PubMed  Google Scholar 

  • Sashital DG, Butcher S (2008) Is the spliceosome a ribozyme? In: Lilley DM, Eckstein F (eds) Ribozymes and RNA catalysis. RSC Publishing, Cambridge, pp 253–269

    Google Scholar 

  • Scheuring S, Sturgis JN (2006) Dynamics and diffusion in photosynthetic membranes from Rhodospirillum photometricum. Biophys J 91:3707–3717

    PubMed  CAS  Google Scholar 

  • Schimmel P, Henderson B (1994) Possible role of aminoacyl–RNA complexes in noncoded peptide synthesis and origin of coded synthesis. Proc Natl Acad Sci USA 91:11283–11286

    PubMed  CAS  Google Scholar 

  • Schimmel P, Giegé R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    PubMed  CAS  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438:520–524

    PubMed  CAS  Google Scholar 

  • Schmid RD (1979) Stabilized soluble enzymes. Adv Biochem Eng 12:41–118

    CAS  Google Scholar 

  • Schnell R, Oehlmann W, Singh M, Schneider G (2007) Structural insights into catalysis and inhibition of O-acetylserine sulfhydrylase from Mycobacterium tuberculosis: crystal structures of the enzyme-a-aminoacrylate intermediate and an enzyme–inhibitor complex. J Biol Chem 282:23473–23481

    PubMed  CAS  Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Phil Trans R Soc Lond B Biol Sci 361:869–885

    CAS  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    PubMed  CAS  Google Scholar 

  • Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81:105–125

    PubMed  Google Scholar 

  • Shapiro R (2007) A simpler origin for life. Sci Am 296:46–53

    PubMed  Google Scholar 

  • Sharov AA (2009) Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int J Mol Sci 10:1838–1852

    PubMed  CAS  Google Scholar 

  • Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, Söll D (2008) From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 36:1813–1825

    PubMed  CAS  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    PubMed  CAS  Google Scholar 

  • Shively J (2006) Complex intracellular structures in prokaryotes. Springer, Berlin Heidelberg

    Google Scholar 

  • Siefert JL, Martin KA, Abdi F, Widger WR, Fox GE (1997) Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J Mol Evol 45:467–472

    PubMed  CAS  Google Scholar 

  • Simon DM, Claske NA, McNeil BA, Johnson I, Pantuso D, Dai L, Chai D, Zimmerly S (2008) Group II introns in Eubacteria and Archaea: ORF-less introns and new varieties. RNA 14:1704–1713

    PubMed  CAS  Google Scholar 

  • Slamovits CH, Keeling PJ (2009) Evolution of ultrasmall spliceosomal introns in highly reduced nuclear genomes. Mol Biol Evol 26:1699–1705

    PubMed  CAS  Google Scholar 

  • Smith E (2008) Thermodynamics of natural selection I: energy flow and the limits on organization. J Theor Biol 252:185–197

    PubMed  CAS  Google Scholar 

  • Smith TF, Lee JC, Gutell RR, Hartman H (2008) The origin and evolution of the ribosome. Biol Direct 3:16

    PubMed  Google Scholar 

  • Song SI, Silver SL, Aulik MA, Rasochova L, Mohan BR, Miller WA (1999) Satellite cereal yellow dwarf virus-RPV (satRPV) RNA requires a double hammerhead for self-cleavage and an alternative structure for replication. J Mol Biol 293:781–793

    PubMed  CAS  Google Scholar 

  • Spitzer J, Poolman B (2009) The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol Mol Biol Rev 73:371–388

    PubMed  CAS  Google Scholar 

  • Stahlberg H, Fotiadis D, Scheuring S, Rémigny H, Braun T, Mitsuoka Y, Fujiyoshi Y, Engel A (2001) Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett 504:166–172

    PubMed  CAS  Google Scholar 

  • Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326

    PubMed  CAS  Google Scholar 

  • Staley JP, Woolford JLJ (2009) Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr Opin Cell Biol 21:109–118

    PubMed  CAS  Google Scholar 

  • Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9:242–253

    PubMed  CAS  Google Scholar 

  • Stern RJ (2008) Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth’s tectonic history. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth? Geol Soc Am Spec Paper 440:265–280

    Google Scholar 

  • Stern R, Jedrzejas MJ (2008) Carbohydrate polymers at the center of life’s origins: the importance of molecular processivity. Chem Rev 108:5061–5085

    PubMed  CAS  Google Scholar 

  • Stewart I (2003) Self-organization in evolution: a mathematical perspective. Phil Trans Soc Lond A Biol Sci 361:1101–1123

    Google Scholar 

  • Sun FJ, Caetano-Anollés G (2008) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21–35

    PubMed  CAS  Google Scholar 

  • Szent-Györgyi A (1972) The living state: with observations on cancer. Academic, New York

    Google Scholar 

  • Talini G, Gallori E, Maurel MC (2009) Natural and unnatural ribozymes: back to the primordial RNA world. Res Microbiol 160:457–465

    PubMed  CAS  Google Scholar 

  • Tanaka T, Kikuchi Y (2001) Origin of the cloverleaf shape of transfer RNA – the double-hairpin model: implication for the role of tRNA intron and the long extra loop. Viva Origino 29:134–142

    CAS  Google Scholar 

  • Tang TH, Rozhdestvensky TS, d’Orval BC, Bortolin ML, Huber H et al (2002) RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 30:921–930

    PubMed  CAS  Google Scholar 

  • Tang M, Waring AJ, Hong M (2005) Intermolecular packing and alignment in an ordered β-hairpin antimicrobial peptide aggregate from 2D solid-state NMR. J Am Chem Soc 127:13919–13927

    PubMed  CAS  Google Scholar 

  • Tarr AC, Villaseñor A, Furlong KP, Rhea S, Benz HM (2010) Seismicity of the Earth 1900–2007: U.S. Geological Survey Scientific Investigations Map 3064. http://pubs.usgs.gov/sim/3064/. Accessed 27 Sep 2010

  • Taylor FJR, Coates D (1989) The code within codons. Biosystems 22:177–187

    PubMed  CAS  Google Scholar 

  • Theil EC, Raymond KN (1994) Transition-metal storage, transport and biomineralization. In: Bertini I, Gray HB, Lippard SJ, Valentine JS (eds) Bioinorganic chemistry. University Science, Mill Valley, pp 1–35

    Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    PubMed  CAS  Google Scholar 

  • Touma J, Wisdom J (1994) Evolution of the Earth-Moon system. Astron J 108:1943–1961

    Google Scholar 

  • Trevors JT, Pollack GH (2005) Hypothesis: the origin of life in a hydrogel environment. Prog Biophys Mol Biol 89:1–8

    PubMed  CAS  Google Scholar 

  • Trinks H, Schröder W, Biebricher CK (2005) Ice and the origin of life. Orig Life Evol Biosph 35:429–445

    PubMed  CAS  Google Scholar 

  • Tsokolov SA (2009) Why is the definition of life so elusive? Epistemological considerations. Astrobiology 9:401–412

    PubMed  Google Scholar 

  • Ungewickell EJ, Hinrichsen L (2007) Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19:417–425

    PubMed  CAS  Google Scholar 

  • van der Gulik P, Massar S, Gilis D, Buhrman H, Rooman M (2009) The first peptides: the evolutionary transition between prebiotic amino acids and early proteins. J Theor Biol 261:531–539

    PubMed  Google Scholar 

  • Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 99:5355–5360

    PubMed  CAS  Google Scholar 

  • Vetsigian K, Woese CR, Goldenfeld N (2006) Collective evolution and the genetic code. Proc Natl Acad Sci USA 103:10696–10701

    Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the Iron-Sulphur World. Prog Biophys Mol Biol 58:85–201

    PubMed  Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil Trans Roy Soc Lond B Biol Sci 361:1787–1808

    Google Scholar 

  • Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602

    PubMed  Google Scholar 

  • Wang L, Ruffner DE (1998) Oligoribonucleotide circularization by ‘template-mediated’ ligation with T4 RNA ligase: synthesis of circular hammerhead ribozymes. Nucleic Acids Res 26:2502–2504

    PubMed  CAS  Google Scholar 

  • Weber AL (2001) The sugar model: catalysis by amines and amino acid products. Orig Life Evol Biosph 31:71–86

    PubMed  CAS  Google Scholar 

  • Weber AL (2007) The sugar model: autocatalytic activity of the triose–ammonia reaction. Orig Life Evol Biosph 37:105–111

    PubMed  CAS  Google Scholar 

  • Wei Y, Cheng F, Zheng H (2008) Synthesis and flocculating properties of cationic starch derivatives. Carbohydr Polym 74:673–679

    CAS  Google Scholar 

  • Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11:1101–1106

    PubMed  CAS  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178

    PubMed  CAS  Google Scholar 

  • Widmann J, Giulio MD, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530

    PubMed  CAS  Google Scholar 

  • Wikipedia (2010a) Fractal landscape. http://en.wikipedia.org/wiki/Fractal_landscape.Accessed 10 Aug 2010

  • Wikipedia (2010b) Periodic table. http://en.wikipedia.org/wiki/Periodic_table. Accessed 18 Aug 2010

  • Wikipedia (2011) File:Haeckel arbol bn.png. http://commons.wikimedia.org/wiki/File:Haeckel_arbol_bn.png. Accessed 14 Feb 2011

  • Will CL, Lührmann R (2005) Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 386:713–724

    PubMed  CAS  Google Scholar 

  • Will CL, Schneider C, Hossbach M, Urlaub H, Rauhut R, Elbashir S, Tuschl T, Lührmann R (2004) The human 18 S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. RNA 10:929–941

    PubMed  CAS  Google Scholar 

  • Williams GE (2000) Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev Geophys 38:37–59

    Google Scholar 

  • Wittig I, Carrozzo R, Santorelli FM, Schägger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072

    PubMed  CAS  Google Scholar 

  • Woese C (1970) Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature 226:817–820

    PubMed  CAS  Google Scholar 

  • Woese CR (1973) Evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    PubMed  CAS  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    PubMed  CAS  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Söll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236

    PubMed  CAS  Google Scholar 

  • Woldringh CL, Nanninga N (2006) Structural and physical aspects of bacterial chromosome segregation. J Struct Biol 156:273–283

    PubMed  CAS  Google Scholar 

  • Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2:14

    PubMed  Google Scholar 

  • Wolf E, Kastner B, Deckert J, Merz C, Stark H, Lührmann R (2009) Exon, intron and splice site locations in the spliceosomal B complex. EMBO J 28:2283–2292

    PubMed  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1994) The role of interactions, sessile growth and nutrient amendments on the degradative efficiency of a microbial consortium. Can J Microbiol 40:331–340

    PubMed  CAS  Google Scholar 

  • Wong JT-F (1988) Evolution of the genetic code. Microbiol Sci 5:164–181

    Google Scholar 

  • Woodhams MD, Stadler PF, Penny D, Collins LJ (2007) RNase MRP and the RNA processing cascade in the eukaryotic ancestor. BMC Evol Biol 7(suppl 1):S13

    PubMed  Google Scholar 

  • Wriston JCJR, Lack L, Shemin D (1955) The mechanism of porphyrin formation. Further evidence on the relationship of the citric acid cycle and porphyrin formation. J Biol Chem 215:603–611

    PubMed  CAS  Google Scholar 

  • Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S (2002) Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J 21:3829–3840

    PubMed  CAS  Google Scholar 

  • Yoshida M, Ogawa M (2004) Influence of two major phase transitions on mantle convection with moving and subducting plates. Earth Planets Space 56:1019–1033

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Google Scholar 

  • Zhang S (2008) Plausible lipid-like peptides: prebiotic molecular self-assembly in water. In: Barrow JD, Morris SC, Freeland SJ, Harper CL Jr (eds) Fitness of the cosmos for life: biochemistry and fine-tuning. Cambridge University Press, Cambridge

    Google Scholar 

  • Zhang W, Dunkle JA, Cate JHD (2009) Structures of the ribosome in intermediate states of ratcheting. Science 325:1014–1017

    PubMed  CAS  Google Scholar 

  • Zuber P (1991) Non-ribosomal peptide synthesis. Curr Opin Cell Biol 3:1046–1050

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Egel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Egel, R. (2011). Integrative Perspectives: In Quest of a Coherent Framework for Origins of Life on Earth. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_12

Download citation

Publish with us

Policies and ethics