Skip to main content

Effectiveness of Phosphate Solubilizing Microorganism in Increasing Plant Phosphate Uptake and Growth in Tropical Soils

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Nutrient Management

Abstract

Low soil phosphate availability is a major constraint for soil fertility in the tropics. Phosphate ions are either adsorbed onto the surface of soil minerals or precipitated by free aluminum and iron ions in acidic soils. In highly weathered soils, this is so intense that plant crops commonly exhibit phosphate deficiency. To overcome this problem, high rates of soluble phosphate fertilizers can be employed to increase the concentration of phosphate in soil solution. Nonetheless, the large quantity of phosphate required in these soils makes it an unviable solution to most farmers in poor developed countries of the tropics. One alternative is to use locally available rock phosphates that are cheaper than soluble phosphate fertilizers. However, the low solubility of rock phosphate limits their agronomic effectiveness in increasing plant phosphate and growth. An alternative means of improving plant phosphate uptake is the combined use of phosphate solubilizing microorganisms (PSMs) and arbuscular mycorrhizal fungi (AMF). The first group of soil microorganisms can enhance the dissolution of rock phosphate via the release of organic acids. The latter group of microorganisms forms symbiotic associations with plant roots and take up phosphate from the soil solution more efficiently than the unaided roots. Once the phosphate is absorbed by the mycorrhizal hyphae, it is delivered into the root tissue. In this text, I will illustrate the mechanisms and synergistic effects that they exhibited to improve plant phosphate uptake and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar. viceae phosphatases. Biol Fert Soils 18:216–218

    Article  CAS  Google Scholar 

  • Agnihorti VP (1970) Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can J Microbiol 16:877–880

    Article  Google Scholar 

  • Amos B, Walters DT (2006) Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Sci Soc Am J 70:1489–1503

    Article  CAS  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilisation by 2 Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Atlas R, Bartha R (1997) Microbial ecology. Addison Wesley Longman, New York

    Google Scholar 

  • Azam F, Memom GH (1996) Soil organisms. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 200–232

    Google Scholar 

  • Azcon C, Barea JM (1996) Interactions of arbuscular mycorrhiza with rhizosphere microorganisms. In: Guerrero E (ed) Mycorrhiza. Biological soil resource, FEN, Bogota, pp 47–68

    Google Scholar 

  • Banik S, Dey BK (1981a) Phosphate solubilizing microorganisms of a lateritic soil. I. Solubilization of inorganic and production of organic acids by microorganisms isolated in sucrose calcium phosphate agar plates. Zentralblatt Bakteriol. Parasitenkunde infectionskarankheiten, hygiene. 2. Naturwiss Miikrobiol Landwirtsch 136:476–486

    Google Scholar 

  • Banik S, Dey BK (1981b) Phosphate solubilizing microorganisms of a lateritic soil. II. Effect of some tricalcium phosphate-solubilizing microorganisms on available phosphorus content of the soil. Zentralblatt Bakteriol. Parasitenkunde infectionskarankheiten, hygiene. 2. Naturwiss Miikrobiol Landwirtsch 136:487–492

    CAS  Google Scholar 

  • Banik S, Dey BK (1981c) Phosphate solubilizing microorganisms of a lateritic soil. III. Effect of inoculation of some tricalcium phosphate-solubilizing microorganisms on available phosphorus content of rhizosphere soils of rice (Oryza sativa L. cv. IR-20). Zentralblatt Bakteriol. Parasitenkunde infectionskarankheiten, hygiene. 2. Naturwiss Miikrobiology Landwirtsch 136:493–501

    CAS  Google Scholar 

  • Banik S, Dey BK (1983) Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zbl Mikrobiol 138:17–23

    CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability. A mechanistic approach. Wiley, New York

    Google Scholar 

  • Barea JM, Azcon R, Hayman DS (1975) Possible synergistic interactions between endogone and phosphate-solubilizing bacteria in low-phosphate soils. In: Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 409–417

    Google Scholar 

  • Barea JM, Toro M, Orozco M, Campos E, Azcon R (2002) The Application of isotopic (32P and 15N) dilution technique to evaluate the interactive effect of phosphate-solubilizing-rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate form legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Bar-Yosef B, Rogers RD, Wolfram JH, Richman E (1999) Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci Soc Am J 63:1703–1708

    Article  CAS  Google Scholar 

  • Bohn H, McNeal BL, O’connor G (1985) Soil chemistry. Wiley, New York

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol Fert Soils 18:311–319

    Article  CAS  Google Scholar 

  • Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuk S (2005) Effect of an arbuscular mycorrhizal fungus, Glomus mosseae, and a rock-phosphate-solubilizing fungus, Penicillium thomii, on Mentha piperita growth in a soilless medium. J Basic Microbiol 45:182–289

    Article  PubMed  Google Scholar 

  • Canbolat MC, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties, and rhizosphere microflora. Biol Fert Soils 42:350–357

    Article  CAS  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: application to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    Article  CAS  Google Scholar 

  • Di-Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fert Soils 28:87–94

    Article  CAS  Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  • Fox RL (1979) Comparative responses of field grown crops to phosphate concentrations in soil solutions. In: Munsell H, Staples R (eds) Stress physiology in crop plants. Wiley, New York, pp 81–106

    Google Scholar 

  • Fox RL, Kamprath E (1970) Phosphate sorption isotherms for evaluating phosphorus requirements of soils. Soil Sci Soc Am Proc 34:902–907

    Article  CAS  Google Scholar 

  • Gaur A, Rana J, Jalali B, Chand H (1990) Role of VA mycorrhizae, phosphate solubilizing bacteria and their interactions on growth and uptake of nutrients by wheat crops. In: Trends in mycorrhizal research. Proceedings of the national conference on mycorrhizae, Hisar, India, pp 105–106

    Google Scholar 

  • Gleddie SC (1993) Response of pea and lentil to inoculation with the phosphate-solubilizing fungus Penicillium bilaii (provide). In: Proceedings of the soils and crops workshops, Saskatoon, Saskatchewan, pp 47–52

    Google Scholar 

  • Gururaj R, Mallikarjunaiah R (1995) Interactions among Azotobacter chroococcum, Penicillium glaucum and Glomus fasciculatum and their effect on the growth and yield of sunflower. Helia 18(23):73–84

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hameeda B, Kumar YH, Rupela OP, Kumar GN, Reddy G (2006) Effect of carbon substrates on rock phosphate solubilization by bacteria from compost and macrofauna. Curr Microbiol 53:298–302

    Article  PubMed  CAS  Google Scholar 

  • Havlin J, Beaton J, Tisdale SL, Nelson W (1999) Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • He ZL, Zhu J (1997) Transformation and bioavailability of specifically sorbed phosphate on variable-charge mineral soils. Biol Fert Soils 25:175–181

    Article  Google Scholar 

  • He ZL, Zhu J (1998) Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biol Biochem 30:917–923

    Article  CAS  Google Scholar 

  • Ilmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    Article  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Kang SC, Chul GH, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil inhabiting, fungus, Fomitopsis spp. PS 102. Curr Sci 25:439–442

    Google Scholar 

  • Kang SC, Pandey P, Khillon R, Maheshwari DK (2008) Process of rock phosphate solubilization by Aspergillus spp. PS 104 in soil amended medium. J Environ Biol 29(5):743–746

    PubMed  CAS  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fert Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1998a) Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fert Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998b) Enterobacter agglomerans, phosphate solubilizing bacteria and microbal activity in soil. Effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kopler J, Lifshitz R, Schroth M (1988) Pseudomonas inoculants to benefit plant production. ISI Atl Sci Anim Plant Sci 1:60–64

    Google Scholar 

  • Kucey RMN (1983) Phosphate solubilising bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    Article  CAS  Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus solubilising Penicillium bilaii strain and with vesicular-asbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703

    PubMed  CAS  Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium bilaii on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    Article  CAS  Google Scholar 

  • Kucey RMN, Leggett ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interaction with the rhizosphere microflora: the mycorhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Londoño A (2010) Efecto de la inoculación con un hongo micorrizal y un hongo solubilizador de fósforo en la absorción de fosfato y crecimiento de leucaena en un oxisol. Tesis M.Sc. Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, p 58

    Google Scholar 

  • Lopez-Bucio J, Campo-Cuevas JC, Hernandez-Calderon E, Velásquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megatherium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylen-independing signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Article  PubMed  CAS  Google Scholar 

  • Louw HA, Webley DM (1959) The solubilization of insoluble phosphates. V. The action of some organic acids on iron and aluminium phosphates. NZ J Sci 2:215–218

    Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    Article  CAS  Google Scholar 

  • Mathews CK, Van Holde KE, Ahern KG (1999) Biochemistry. Benjamin Cummings, San Francisco, CA

    Google Scholar 

  • Memon KS (1996) Soil and fertilizer phosphorus. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 291–314

    Google Scholar 

  • Mohod S, Gupta DN, Chavan AS (1991) Effects of P solubilizing organisms on yield and N uptake by rice. J Maharashtra Agric Univ 16:229–231

    CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–35

    Article  CAS  Google Scholar 

  • Omar SA (1998) The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218

    Article  CAS  Google Scholar 

  • Osorio NW (2008) Effectiveness of microbial solubilization of phosphate in enhancing plant phosphate uptake in tropical soils and assessment of the mechanisms of solubilization. Ph.D. dissertation, University of Hawaii, Honolulu

    Google Scholar 

  • Osorio NW, Habte M (2001) Synergistic influence of an arbuscular mycorrhizal fungus and P solubilizing fungus on growth and plant P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res Manag 15:263–274

    Article  CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing microorganism and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    Article  PubMed  CAS  Google Scholar 

  • Paul NB, Rao WVBS (1971) Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant Soil 35:127–132

    Article  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velasquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorrhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Pikovskaia RI (1948) Mobilization of phosphates in soil in connection with the vital activities of some microbial species. Mikrobiologiia 17:362–370

    Google Scholar 

  • Prathibha CK, Alagawadi A, Sreenivasa M (1995) Establishment of inoculated organisms in rhizosphere and their influence on nutrient uptake and yield of cotton. J Agric Sci 8:22–27

    Google Scholar 

  • Prescott L, Harley J, Klein DA (1999) Microbiology. McGraw-Hill, Boston, MA

    Google Scholar 

  • Rahman MK, Parsons JW (1997) Effects of inoculation with Glomus mosseae, Azorhizobium caulinodans and rock phosphate on the growth of and nitrogen and phosphorus accumulation in Sesbania rostrata. Biol Fert Soils 25:47–52

    Article  CAS  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhyzae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhyzae, their ecology and physiology. Academic, London, pp 299–343

    Google Scholar 

  • Rao S (1992) Biofertilizers in agriculture. AA Balkema, Rotterdam

    Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubigensis and Aspergillus niger. Bioresour Technol 84:187–189

    Article  PubMed  CAS  Google Scholar 

  • Reyes I, Valery A, Valduz Z (2006) Phosphate-solubilizing microrganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil 287:69–75

    Article  CAS  Google Scholar 

  • Roos W, Luckner M (1984) Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014

    CAS  Google Scholar 

  • Rose RE (1957) Techniques of determining the effect of microorganisms on insoluble inorganic phosphates. NZ J Sci Technol 38:773–780

    Google Scholar 

  • Rosendahl RO (1942) The effect of mycorrhizal and non-mycorrhizal fungi on the availability of difficulty soluble potassium and phosphorus. Soil Sci Soc Am Proc 7:477–479

    Article  Google Scholar 

  • Sanchez P, Logan T (1992) Myths and science about the chemistry and fertility of soils in the tropics. In: Lal R, Sanchez P (eds) Myths and science of soils of the tropics. Soil Science Society of America, Madison, WI, pp 35–46

    Google Scholar 

  • Sanchez P, Uehara G (1980) Management considerations for acid soils with high phosphorus fixation capacity. In: Khasawneh FE (ed) The role of phosphorus in agriculture. Soil Science Society of America, Madison, WI, pp 471–514

    Google Scholar 

  • Shabayey VP, Smolin VY, Mudrik VA (1996) Nitrogen fixation and CO2 exchange in soybeans inoculated with mixed cultures of different microorganisms. Biol Fert Soils 23:425–430

    Article  Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fert Soils 28:139–144

    Article  CAS  Google Scholar 

  • Sperber JI (1957) Solution of mineral phosphates by soil bacteria. Nature 180:994–994

    Article  PubMed  CAS  Google Scholar 

  • Sperber JI (1958) Solution of apatite by soil microorganisms producing organic acids. Aust J Agric Res 9:782–787

    Article  CAS  Google Scholar 

  • Sreenivasa M, Krishnaraj M (1992) Synergistic interaction between VA mycorrhizal fungi and a phosphate solubilizing bacterium in chili. ZBL Mikrobiol 147:126–130

    Google Scholar 

  • Stevenson FJ (1986) Cycles of soil. Wiley, New York

    Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fert Soils 25:13–19

    Article  Google Scholar 

  • Tinker PB (1980) Role of rhizosphere microorganisms in phosphorus uptake by plants. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. Soil Science Society of America, Madison, WI, pp 617–654

    Google Scholar 

  • Toro M, Azcon R, Herrera R (1996) Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseolides exerted by P-solubilizing rhizobacteria. Biol Fert Soils 21:23–29

    Article  Google Scholar 

  • Toro M, Azcon R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of rhizobium genotypes, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    Article  CAS  Google Scholar 

  • Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of rhizosphere research on P acquisition. Aust J Soil Res 41:471–499

    Article  Google Scholar 

  • Venkateswardu B, Rao AV, Raina P (1984) Evaluation of phosphorus solubilization by microorganisms isolated from aridisols. J Indian Soc Soil Sci 32:273–277

    Google Scholar 

  • Wakelin SA, Warren RA, Ryder MH (2004a) Effect of soil properties on growth promotion of wheat by Penicillium radicum. Aust J Soil Res 42:897–904

    Article  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004b) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fert Soils 40:36–43

    Article  CAS  Google Scholar 

  • Welch S, Taunton AE, Banfiled JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19:343–367

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Bender GL (1997) Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Aust J Soil Res 35:291–300

    Article  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Biol Fert Soils 35:471–478

    CAS  Google Scholar 

  • Young CC, Chen CL, Chao CC (1990) Effect of Rhizobium, vesicular-arbuscular mycorrhiza, and phosphate solubilizing bacteria on yield and mineral phosphorus uptake of crops in subtropical-tropical. In: 14th international congress of soil science. Transactions, vol. III, International Society of Soil Science, Kyoto, Japan, pp 55–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Walter Osorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osorio, N.W. (2011). Effectiveness of Phosphate Solubilizing Microorganism in Increasing Plant Phosphate Uptake and Growth in Tropical Soils. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21061-7_4

Download citation

Publish with us

Policies and ethics