Skip to main content

Geostatistics for Large Datasets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 207))

Abstract

Each chapter should be preceded by an abstract (10–15 lines long) that summarizes the content. The abstract will appear onlineat www.SpringerLink.com and be available with unrestricted access. This allows unregistered users to read the abstract as a teaser for the complete chapter. As a general rule the abstracts will not appear in the printed version of your book unless it is the style of your particular book or that of the series to which your book belongs. Please use the ’starred’ version of the new Springer abstractcommand for typesetting the text of the online abstracts (cf. source file of this chapter template abstract) and include them with the source files of your manuscript. Use the plain abstractcommand if the abstract is also to appear in the printed version of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allcroft, D.J., Glasbey, C.A.: A latent Gaussian Markov random field model for spatio-temporal rainfall disaggregation. J. R. Stat. Soc. Ser. C 52, 487–498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banerjee, S., Finley, A.O., Waldmann, P., Ericsson, T.: Hierarchical spatial process models for multiple traits in large genetic trials. J. Amer. Statist. Assoc. 105, 506–521 (2010)

    Article  MathSciNet  Google Scholar 

  3. Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H.: Gaussian predictive process models for large spatial datasets. J. R. Stat. Soc. Ser. B 70, 825–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caragea, P.C., Smith, R.L.: Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models. J. Multivariate Anal. 98, 1417–1440 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caragea, P.C., Smith, R.L.: Approximate likelihoods for spatial processes. Technometrics. In press (2011)

    Google Scholar 

  6. Cressie, N., Huang, H.C.: Classes of nonseparable, spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc. 94, 1330–1340 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cressie, N., Johannesson, G.: Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. Ser. B 70, 209–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cressie, N., Kang, E.L.: High-resolution digital soil mapping: Kriging for very large datasets. In Proximal Soil Sensing, eds R. Viscarra-Rossel, A. B. McBratney, and B. Minasny. Elsevier, Amsterdam, 49–66 (2010)

    Google Scholar 

  9. Cressie, N., Shi, T., Kang, E.L.: Fixed rank filtering for spatio-temporal data. J. Comput. Graph. Statist. 19, 724–745 (2010)

    Article  MathSciNet  Google Scholar 

  10. Cressie, N., Verzelen, N.: Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields. Comput. Statist. Data Anal. 52, 2794–2807 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, J., Zhang, H., Mandrekar, V.S.: Fixed-domain asymptotic properties of tapered maximum likelihood estimators. Ann. Statist. 37, 3330–3361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eidsvik, J., Finley, A., Banerjee, S., Rue, H.: Approximate Bayesian inference for large spatial datasets using predictive process models. Manuscript (2011)

    Google Scholar 

  13. Finley, A.O., Banerjee, S., MacFarlane, D.W.: A hierarchical model for quantifying forest variables over large heterogeneous landscapes with uncertain forest areas. J. Amer. Statist. Assoc. 106, 31–48 (2011)

    Article  MathSciNet  Google Scholar 

  14. Finley, A.O., Sang, H., Banerjee, S., Gelfand, A.E.: Improving the performance of predictive process modeling for large datasets. Comput. Statist. Data Anal. 53, 2873–2884 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fuentes, M.: Approximate likelihood for large irregularly spaced spatial data. J. Amer. Statist. Assoc. 102, 321–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98, 227–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Furrer, R., Genton, M.G.: Aggregation-cokriging for highly-multivariate spatial data. Biometrika. 98, 615–631 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Furrer, R., Genton, M.G., Nychka, D.: Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Statist. 15, 502–523 (2006)

    Article  MathSciNet  Google Scholar 

  19. Furrer, R., Sain, S.: Spatial model fitting for large datasets with applications to climate and microarray problems. Stat. Comput. 19, 113–128 (2009)

    Article  MathSciNet  Google Scholar 

  20. Genton, M.G.: Separable approximations of space-time covariance matrices. Environmetrics. Special Issue for METMA3 18, 681–695 (2007)

    Google Scholar 

  21. Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical space-time models, stationarity, separability and full symmetry. In Finkenstaedt, B., Held, L. and Isham, V. (eds.), Statistics of Spatio-Temporal Systems, Chapman & Hall/CRC Press, 151–175 (2007)

    Google Scholar 

  22. Guan, Y., Sherman, M., Calvin, J.A.: A nonparametric test for spatial isotropy using subsampling. J. Amer. Statist. Assoc. 99, 810–821 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haas, T.C.: Lognormal and moving window methods of estimating acid deposition. J. Amer. Statist. Assoc. 85, 950–963 (1990)

    Article  Google Scholar 

  24. Hartman, L., H\(\ddot{\mbox{ o}}\)ssjer, O.: Fast kriging of large data sets with Gaussian Markov random fields. Comput. Statist. Data Anal. 52, 2331–2349 (2008)

    Google Scholar 

  25. Hrafnkelsson, B., Cressie, N.: Hierarchical modeling of count data with application to nuclear fall-out. Environ. Ecol. Stat. 10, 179–200 (2003)

    Article  MathSciNet  Google Scholar 

  26. Jun, M., Genton, M.G.: A test for stationarity of spatio-temporal processes on planar and spherical domains. Statist. Sinica. In press (2012)

    Google Scholar 

  27. Jun, M., Stein, M.L.: An approach to producing space-time covariance functions on spheres. Technometrics. 49, 468–479 (2007)

    Article  MathSciNet  Google Scholar 

  28. Jun, M., Stein, M.L.: Nonstationary covariance models for global data, Ann. Appl. Stat. 2, 1271–1289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, E.L., Cressie, N., Shi, T.: Using temporal variability to improve spatial mapping with application to satellite data. Canad. J. Statist. 38, 271–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kaufman, C., Schervish, M., Nychka, D.: Covariance tapering for likelihood-based estimation in large spatial datasets. J. Amer. Statist. Assoc. 103, 1556–1569 (2008)

    Article  MathSciNet  Google Scholar 

  31. Li, B., Genton, M.G., Sherman, M.: A nonparametric assessment of properties of space-time covariance functions. J. Amer. Statist. Assoc. 102, 736–744 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B., Genton, M.G., Sherman, M.: Testing the covariance structure of multivariate random fields. Biometrika. 95, 813–829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lindgren, F., Rue, H., Lindstr\(\ddot{\mbox{ o}}\)m, J.: An explict link between Gaussian fields and Gaussian Markov random fields: The SPDE approach (with discussion). J. R. Stat. Soc. Ser. B, 73, 423–498 (2011)

    Google Scholar 

  34. Matsuda, Y., Yajima, Y.: Fourier analysis of irregularly spaced data on \({\mathbb{R}}^{d}\). J. R. Stat. Soc. Ser. B 71, 191–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Ser. B 71, 319–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rue, H., Tjelmeland, H.: Fitting Gaussian Markov random fields to Gaussian fields. Scand. J. Statist. 29, 31–50 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sang, H., Huang, J.Z.: A full-scale approximation of covariance functions for large spatial data sets. J. R. Stat. Soc. Ser. B, in press (2011)

    Google Scholar 

  38. Sang, H., Jun, M., Huang, J.Z.: Covariance approximation for large multivariate spatial datasets with an application to multiple climate model errors. Ann. Appl. Stat., in press (2011)

    Google Scholar 

  39. Shaby, B., Ruppert, D.: Tapered covariance: Bayesian estimation and asymptotics. J. Comput. Graph. Statist., in press (2011)

    Google Scholar 

  40. Shao, X., Li, B.: A tuning parameter free test for properties of space-time covariance functions. J. Statist. Plann. Inference. 139, 4031–4038 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi, T., Cressie, N.: Global statistical analysis of MISR aerosol data: a massive data product from NASA’s Terra satellite. Environmetrics. 18, 665–680 (2007)

    Article  MathSciNet  Google Scholar 

  42. Song, H., Fuentes, M., Gosh, S.: A comparative study of Gaussian geostatistical models and Gaussian Markov random field models. J. Multivariate Anal. 99, 1681–1697 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stein, M.L.: A modeling approach for large spatial datasets. J. Korean Statist. Soc. 37, 3–10 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stein, M.L., Chi, Z., Welty, L.J.: Approximating likelihoods for large spatial datasets. J. R. Stat. Soc. Ser. B 66, 275–296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Varin, C., Reid, N., Firth, D.: An overview on composite likelihood methods. Statist. Sinica. 21, 5–42 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Vecchia, A.V.: Estimation and model identification for continuous spatial process. J. R. Stat. Soc. Ser. B 50, 297–312 (1998)

    MathSciNet  Google Scholar 

  47. Whittle, P.: On stationary processes in the plane. Biometrika. 41, 434–449 (1954)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, H., Wang, Y.: Kriging and cross-validation for massive spatial data. Environmetrics. 21, 290–304 (2010)

    Article  MathSciNet  Google Scholar 

  49. Zhu, Z., Wu, Y.: Estimation and prediction of a class of convolution-based spatial nonstationary models for large spatial data. J. Comput. Graph. Statist. 19, 74–95 (2010)

    Article  MathSciNet  Google Scholar 

  50. Zimmerman, D.: Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models. J. Statist. Comput. Simul. 32, 1–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Reinhard Furrer for valuable comments on the manuscript. Li’s research was partially supported by NSF grant DMS-1007686. Genton’s research was partially supported by NSF grants DMS-1007504 and DMS-1100492, and by Award No. KUSC1-016-04, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, Y., Li, B., Genton, M.G. (2012). Geostatistics for Large Datasets. In: Porcu, E., Montero, J., Schlather, M. (eds) Advances and Challenges in Space-time Modelling of Natural Events. Lecture Notes in Statistics(), vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17086-7_3

Download citation

Publish with us

Policies and ethics