Skip to main content

An Efficient Strategy for Fast Object Search Considering the Robot’s Perceptual Limitations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6433))

Abstract

Searching for an object in an environment using a mobile robot is a challenging task that requires an algorithm to define a set of points in which to sense the environment and an effective traversing strategy, to decide the order in which to visit such points. Previous work on sensing strategies normally assume unrealistic conditions like infinite visibility of the sensors. This paper introduces the concept of recognition area that considers the robot’s perceptual limitations. Three new sensing algorithms using the recognition area are proposed and tested over 20 different maps of increasing difficulty and their advantages over traditional algorithms are demonstrated. For the traversing strategy, a new heuristic is defined that significantly reduces the branching factor of a modified Branch & Bound algorithm, producing paths which are not too far away from the optimal paths but with several orders of magnitude faster that a traditional Branch & Bound algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, J.L., Norman, M.: Multi-robot search and rescue: A potential field based approach

    Google Scholar 

  2. Casper, J., Murphy, R.: Human-robot interaction during the robot-assited urban search and rescue effort at the world trade center. IEEE Transactions on Systems, Man and Cybernetics Parts B 33(3), 367–385 (2003)

    Article  Google Scholar 

  3. Eberly, D.: Triangulation by ear clipping (March 2008)

    Google Scholar 

  4. Hoffmann, F., Kaufmann, M., Kriegel, K.: The art gallery theorem for polygons with holes. In: The 32nd IEEE Symposium on the Foundation of Computer Science, pp. 39–48 (1991)

    Google Scholar 

  5. Latombe, J.C.: Robot motion planning, Boston (1991)

    Google Scholar 

  6. Nourbakhsh, I.R., Sycara, K., Koes, M., Yong, M., Lewis, M., Burion, S.: Human-robot teaming for search and rescue. IEEE CS and IEEE ComSoc (2005)

    Google Scholar 

  7. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press Inc., New York (1987)

    MATH  Google Scholar 

  8. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998) Hardback ISBN: 0521640105; Paperback: ISBN 0521649765

    Book  MATH  Google Scholar 

  9. Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: An efficient strategy for rapidly finding an object in a polygonal world. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1153–1158 (2003)

    Google Scholar 

  10. Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: A sample-based convex cover for rapidly finding an object in a 3-d environment. In: Proc. IEEE International Conference on Robotics and Automation, pp. 3497–3502 (2005)

    Google Scholar 

  11. Sjöö, K., Galvez-Lopez, D., Paul, C., Jensfelt, P., Kragic, D.: Object search and localization for an indoor mobile robot. Journal of Computing and Information Technology - CIT 17(1), 67–80 (2009)

    Article  Google Scholar 

  12. Tovar, B., LaValle, S.M., Murrieta-Cid, R.: Optimal navigation and object finding without geometric maps or localization. In: Proc. IEEE International Conference on Robotics and Automation, pp. 464–470 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cabanillas, J., Morales, E.F., Sucar, L.E. (2010). An Efficient Strategy for Fast Object Search Considering the Robot’s Perceptual Limitations. In: Kuri-Morales, A., Simari, G.R. (eds) Advances in Artificial Intelligence – IBERAMIA 2010. IBERAMIA 2010. Lecture Notes in Computer Science(), vol 6433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16952-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16952-6_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16951-9

  • Online ISBN: 978-3-642-16952-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics