Skip to main content

Helicases

  • Reference work entry
  • 236 Accesses

Synonyms

DNA; Molecular motors

Introduction

Although DNA is most stable as a double-stranded helical structure, this must be unwound and the strands separated transiently for most DNA processing. The single-stranded intermediates are required for replication (Machinery of DNA Replication), repair, recombination, and DNA transfer during conjugation, and, in each of these processes, duplex DNA unwinding is catalyzed by ubiquitous enzymes known as helicases. These proteins cause the destabilization of the hydrogen bonds between the complementary base pairs and the stacking of adjacent bases as it translocates along the DNA. This separation is coupled to hydrolysis of nucleoside triphosphate, most frequently ATP.

A number of enzymes have also been characterized that demonstrate RNA helicase activity (Bleichert and Baserga 2007; Jankowsky 2010). Structurally and functionally, RNA is a diverse molecule that is highly regulated. Helicases function in all aspects of RNA metabolism, such as...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bleichert F, Baserga SJ. The long unwinding road of RNA helicases. Mol Cell. 2007;27:339–52.

    CAS  PubMed  Google Scholar 

  • Delagoutte E, von Hippel PH. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: structures and properties of isolated helicases. Q Rev Biophys. 2002;35:431–78.

    CAS  PubMed  Google Scholar 

  • Delagoutte E, von Hippel PH. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q Rev Biophys. 2003;36:1–69.

    CAS  PubMed  Google Scholar 

  • Dillingham MS, Soultanas P, Wiley P, Webb MR, Wigley DB. Defining the roles of individual residues in the single-stranded DNA binding site of PcrA helicase. Proc Natl Acad Sci USA. 2001;98:8381–7.

    CAS  PubMed  Google Scholar 

  • Dixon DA, Kowalczykowski SC. Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell. 1991;66:361–71.

    CAS  PubMed  Google Scholar 

  • Donmez I, Patel SS. Mechanisms of a ring shaped helicase. Nucleic Acids Res. 2006;34:4216–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fili N, Mashanov G, Toseland CP, Batters C, Wallace MI, Yeeles JTP, Dillingham MS, Webb MR, Molloy JE. Visualizing DNA unwinding by helicases at the single molecule level. Nucleic Acids Res. 2010;38:4448–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol. 1993;3:419–29.

    CAS  Google Scholar 

  • Ha T, Lohman TM. Single molecule FRET studies of helicases. Annu Rev Biophys. 2012;41

    Google Scholar 

  • Jameson DM, Eccleston JF. Fluorescent nucleotide analogs: synthesis and applications. Methods Enzymol. 1997;278:363–90.

    CAS  PubMed  Google Scholar 

  • Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci. 2010;36(1):19–29.

    Google Scholar 

  • Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol. 2008;9:391–401.

    CAS  PubMed  Google Scholar 

  • Marians KJ. Crawling and wiggling on DNA: structural insights to the mechanism of DNA unwinding by helicases. Structure. 2000;8:R227–35.

    CAS  PubMed  Google Scholar 

  • Pyle AM. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys. 2008;37:317–36.

    CAS  PubMed  Google Scholar 

  • Rasnik I, Myong S, Ha T. Unraveling helicase mechanisms one molecule at a time. Nucleic Acids Res. 2006;34:4225–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.

    CAS  PubMed  Google Scholar 

  • Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell. 2003;114:647–54.

    CAS  PubMed  Google Scholar 

  • Toseland CP, Webb MR. Fluorescence tools to measure helicase activity in real time. Methods. 2010;51:259–68.

    CAS  PubMed  Google Scholar 

  • van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet. 2000;1:409–59.

    PubMed  Google Scholar 

  • Webb MR. Development of fluorescent biosensors for probing the function of motor proteins. Mol Biosyst. 2007;3:249–56.

    CAS  PubMed  Google Scholar 

  • Webb MR. Fluorescent biosensors to investigate helicase activity. Methods Mol Biol. 2010;587:13–27.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Webb, M.R., Toseland, C.P. (2013). Helicases. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_463

Download citation

Publish with us

Policies and ethics