Skip to main content

A Brief History of Oxygen

  • Chapter
  • First Online:
Oxygen and the Evolution of Life

Abstract

Where did oxygen come from? Remarkably, that atom of oxygen you have just breathed had its origin in the heart of an ancient star. To understand this, one has to make an imaginary journey back to the creation of the universe, the “big bang,” more than 12 BYA. We shall avoid details of physics, and simply describe a reasonable scenario that is accepted by most physicists today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allday J (1999) Quarks, leptons, and the big bang, 2nd edn. Institute of Physics, Bristol, UK

    Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen. Ann Rev Earth Planet Sci 83:1–36

    Article  Google Scholar 

  • Chyba CF, Sagan C (1997) Comets as a source of prebiotic organic molecules for the Early Earth. In: Thomas PJ, Chyba CF, Mc Kay CP (eds) Comets and the origin and evolution of life. Springer, Berlin, p 147

    Google Scholar 

  • Delsemme AH (1992) Cometary origin of carbon, nitrogen and water on the Earth. Orig Life Evol Biosph 21:279–298

    Article  Google Scholar 

  • Fedo VM, Whitehouse M, Kamber B (2006) Geological constrains on detecting the earliest life. Philos Trans R Soc Lond B Biol Sci 361:851–867

    Article  PubMed  CAS  Google Scholar 

  • Frausto da Silva FIJR, Williams RSP (2001) The biological chemistry of the elements, 2nd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Gutzman I, Benkes NI (1998) Earliest laterites and possible evidence for terrestrial vegetation in the early Proterozoic. Geology 26:263–266

    Article  Google Scholar 

  • Heuseler H, Jaumann R, Neukum G (2000) Zwischen Sonne und Pluto. BLV, München

    Google Scholar 

  • Holland AD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915

    Article  PubMed  CAS  Google Scholar 

  • Hunten PH (1993) Atmospheric evolution of the terrestrial planets. Science 254:915–919

    Google Scholar 

  • Joyce GF (1989) RNA evolution and the origins of life. Nature 338:217–244

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Howard MZ (2006) Atmospheric composition and climate on the Early Earth. Philos Trans R Soc Lond B Biol Sci 361:1733–1742

    Article  PubMed  CAS  Google Scholar 

  • Kopp RE, Kirshvink IL, Hillburn IA, Cody Z (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by evolution of oxygenic photosystems. Proc Natl Acad Sci USA 102:11131–11136

    Article  PubMed  CAS  Google Scholar 

  • Lambert IB, Donnelly TH (1991) Atmospheric oxygen levels in the Precambrian: a review of isotopic and geological evidence. Palaeogeogr Palaeoclimatol Palaeoecol 97:83–91

    Article  Google Scholar 

  • Martin A, Line MA (2002) The enigma of the origin of life and its timing. Microbiology 148:21–27

    Google Scholar 

  • Mathews C, van Holde KE, Ahem K (2000) Biochemistry, 3rd edn. Addison-Wesley-Longman, Reading, MA

    Google Scholar 

  • Müller J, Lesch H (2005) Vom Urknall zum roten Riesen – die Entstehung der. chemischen Elemente. Chem unserer Zeit 39:100–105

    Article  Google Scholar 

  • Münker C, Pfänder J, Weyer S, Büchl A, Kleine T, Mezger K (2003) Evolution of planetary cores and the Earth – Moon system from Nb/Ta systematics. Science 301:84–87

    Article  PubMed  Google Scholar 

  • O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for Hadean Mafic crust. Science 321:1828–1831

    Article  PubMed  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Owen T, Cess RD, Ramanathan V (1979) Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277:640–642

    Article  CAS  Google Scholar 

  • Press F, Siefer R (1995) Allgemeine Geologie. Spektrum-Verlag, Heidelberg

    Google Scholar 

  • Quenzel H (1987) Die Entwicklung der Erdatmosphäre. In: Wilhelm F (Hrsg) Gang der Evolution. Beck Verlag, München

    Google Scholar 

  • Rauchfuss H (2005) Chemische Evolution und der Ursprung des Lebens. Springer, Berlin. ISBN 10-3-540-23965-0

    Google Scholar 

  • Robert F (2001) The origin of water on Earth. Science 293:1056–1058

    Article  PubMed  CAS  Google Scholar 

  • Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621–672

    Article  PubMed  CAS  Google Scholar 

  • Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Ferrara A, Salvaterra R, Omukai K, Bromm V (2003) Low-mass relics of early star formation. Nature 422:869–871

    Article  Google Scholar 

  • Schopf JW (2006) Fossil evidence of archean life. Philos Trans R Soc Lond B Biol Sci 361:869–885

    Article  PubMed  CAS  Google Scholar 

  • Seki K, Elphic RC, Hirahara M, Terasawa T, Mukai T (2001) On atmospheric loss of oxygen ions from Earth through magnetospheric processes. Science 291:1939–1941

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK, Jr RCS (2002) Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    Article  PubMed  CAS  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3, 416-Myr-old ocean. Nature 431:549–552

    Article  PubMed  CAS  Google Scholar 

  • Truran IW, Heger A (2004) Origin of the elements. In: Davis AM (volume ed) Treatise in geochemistry, vol I. Elsevier, Amsterdam

    Google Scholar 

  • van Holde KE (1980) The origin of life: a thermodynamic critique. In: Halvorson HO, van Holde KE (eds) The origins of life and evolution. Alan Liss, New York

    Google Scholar 

  • Wacey D (2009) Early life on Earth: a practical guide. Springer, New York

    Book  Google Scholar 

  • Weigert A, Wendker JH, Wisotzki L (1996) Astronomie und Astrophysik, 4 Aufl. VCH, Weinheim

    Google Scholar 

  • Wetherhill G (1981) Spektrum der Wissenschaften August:107

    Google Scholar 

  • Wills C, Bada J (2000) The spark of life. Perseus, Cambridge, MA

    Google Scholar 

  • Yoshida N, Omukai K, Hernquist L (2008) Protostar formation in the early universe. Science 321:669–671

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Decker .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Decker, H., van Holde, K.E. (2011). A Brief History of Oxygen. In: Oxygen and the Evolution of Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13179-0_2

Download citation

Publish with us

Policies and ethics