Skip to main content

Support Vector Optimization through Hybrids: Heuristics and Math Approach

  • Conference paper
  • 1524 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5845))

Abstract

This paper presents a strategy to optimize the learning phase of the Support Vector Machines algorithm (SVM). The SVM algorithm is widely used in solving different tasks like classification, regression, density estimation and clustering problems. However, the algorithm presents important disadvantages when learning large scale problems. Training a SVM involves finding the solution of a quadratic optimization problem (QP), which is very resource consuming. What is more, during the learning step, the best working set must be selected, which is a hard to perform task. In this work, we combine a heuristic approach, which selects the best working set data, with a projected conjugate gradient method, which is a fast and easy to implement algorithm that solves the quadratic programming problem involved in the SVM algorithm. We compare the performances of the optimization strategies using some well-known benchmark databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic anal- ysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ariel, G.G., Neil, H.G.: A comparison of different initialization strategies to reduce the training time of support vector machines. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 613–618. Springer, Heidelberg (2005)

    Google Scholar 

  3. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)

    MATH  Google Scholar 

  5. Edgar, O., Freund, R., Girosi, F.: Support vector machines: Training and applications (1997)

    Google Scholar 

  6. Edgar, O., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, pp. 130–136 (1997)

    Google Scholar 

  7. Goonatilake, S., Khebbal, S.: Intelligent hybrid systems. John Wiley, Inc., New York (1994)

    Google Scholar 

  8. Poulard, H., Stéve, D.: Barycentric correction procedure: A fast method of learning threshold unit (1995)

    Google Scholar 

  9. Poulard. H. and Stéve. D.: A convergence theorem for barycentric correction procedure. Technical Report 95180, LAAS-CNRS (1995)

    Google Scholar 

  10. Kecman, V.: Learning and Soft Computing, 1st edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  11. Linda, K.: Solving the quadratic programming problem arising in support vector classification. In: Advances in kernel methods: support vector learning, pp. 147–167. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Miguel, G.M., Neil, H.G., Andr, T.: Quadratic optimization fine tuning for the learning phase of svm (2005)

    Google Scholar 

  13. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Bernhard SchlkopfChristopher, J.C., Smola, B.J. (eds.) Advances in Kernel Methods: Support Vector Learning. The MIT Press, Cambridge (1998)

    Google Scholar 

  14. Fletcher, R.: Practical methods of optimization, 2nd edn. Wiley- Interscience, Chichester (1987)

    MATH  Google Scholar 

  15. Tong, W., Alan, E., David, G.: A fast projected conjugate gradient algorithm for training support vector machines. Contemporary mathematics: theory and applications, 245–263 (2003)

    Google Scholar 

  16. Vladimir, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gamboa, A.G., Gress, N.H., Mendoza, M.G., Vargas, J.M. (2009). Support Vector Optimization through Hybrids: Heuristics and Math Approach. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05258-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05257-6

  • Online ISBN: 978-3-642-05258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics