Skip to main content

Measuring and Optimizing Behavioral Complexity for Evolutionary Reinforcement Learning

  • Conference paper
Book cover Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

Model complexity is key concern to any artificial learning system due its critical impact on generalization. However, EC research has only focused phenotype structural complexity for static problems. For sequential decision tasks, phenotypes that are very similar in structure, can produce radically different behaviors, and the trade-off between fitness and complexity in this context is not clear. In this paper, behavioral complexity is measured explicitly using compression, and used as a separate objective to be optimized (not as an additional regularization term in a scalar fitness), in order to study this trade-off directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baronchelli, A., Caglioti, E., Loreto, V.: Artificial sequences and complexity measures. Journal of Statistical Mechanics (2005)

    Google Scholar 

  2. De Jong, E.D., Pollack, J.B.: Multi-objective methods for tree size control. Genetic Programming and Evolvable Machines 4(3), 211–233 (2003)

    Article  Google Scholar 

  3. De Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity using multi-objective methods. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  5. Gomez, F.: Sustaining diversity using behavioral information distance. In: Proceedings of the Genetic and Evolutionary Computation Conference (to appear, 2009)

    Google Scholar 

  6. Iba, H., Garis, H.D., Sato, T.: Genetic programming using a minimum description length principle. In: Advances in Genetic Programming, pp. 265–284. MIT Press, Cambridge (1994)

    Google Scholar 

  7. Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its applications. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 188–254. Elsevier Science Publishers B.V., Amsterdam (1990)

    Google Scholar 

  8. Rissanen, J.: Modeling by shortest data description. Automatica, 465–471 (1978)

    Google Scholar 

  9. Teller, A.: Advances in Genetic Programming, ch. 9. MIT Press, Cambridge (1994)

    Google Scholar 

  10. Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolutionary algorithms. Evolutionary Computation 11(2), 151–167 (2003)

    Article  Google Scholar 

  11. Togelius, J.: Optimization, Imitation and Innovation: Computational Intelligence and Games. PhD thesis, Department of Computing and Electronic Systems, University of Essex, Colchester, UK (2007)

    Google Scholar 

  12. Zhang, B.-T., Muhlenbein, H.: Evolving optimal neural networks using genetic algorithms with occam’s razor. Complex Systems 7, 199–220 (1993)

    Google Scholar 

  13. Zhang, B.-T., Muhlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evolutionary Computation 3, 17–38 (1995)

    Article  Google Scholar 

  14. Zhang, B.-T., Mühlenbein, H.: MDL-based fitness functions for learning parsimonious programs. In: Siegel, E.V., Koza, J.R. (eds.) Working Notes for the AAAI Symposium on Genetic Programming, November 10–12, pp. 122–126. MIT, Cambridge (1995) AAAI

    Google Scholar 

  15. Zhang, B.-T., Ohm, P., Mühlenbein, H.: Evolutionary induction of sparse neural trees. Evolutionary Computation 5(2), 213–236 (1997)

    Article  Google Scholar 

  16. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory (September 1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomez, F.J., Togelius, J., Schmidhuber, J. (2009). Measuring and Optimizing Behavioral Complexity for Evolutionary Reinforcement Learning. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics