Skip to main content

The Longest Path Problem Is Polynomial on Interval Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arikati, S.R., Pandu Rangan, C.: Linear algorithm for optimal path cover problem on interval graphs. Inform. Proc. Lett. 35, 149–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertossi, A.A.: Finding Hamiltonian circuits in proper interval graphs. Inform. Proc. Lett. 17, 97–101 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bulterman, R., van der Sommen, F., Zwaan, G., Verhoeff, T., van Gasteren, A., Feijen, W.: On computing a longest path in a tree. Inform. Proc. Lett. 81, 93–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Damaschke, P., Deogun, J.S., Kratsch, D., Steiner, G.: Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm. Order 8, 383–391 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Damaschke, P.: The Hamiltonian circuit problem for circle graphs is NP-complete. Inform. Proc. Lett. 32, 1–2 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Damaschke, P.: Paths in interval graphs and circular arc graphs. Discrete Math. 112, 49–64 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feder, T., Motwani, R.: Finding large cycles in Hamiltonian graphs. In: Proc. 16th annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 166–175. ACM, New York (2005)

    Google Scholar 

  8. Gabow, H.N.: Finding paths and cycles of superpolylogarithmic length. In: Proc. 36th annual ACM Symp. on Theory of Computing (STOC), pp. 407–416. ACM, New York (2004)

    Google Scholar 

  9. Gabow, H.N., Nie, S.: Finding long paths, cycles and circuits. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 752–763. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Computing 5, 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. Journal of Computational Biology 2, 139–152 (1995)

    Article  Google Scholar 

  13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. North-Holland Publishing Co., Amsterdam (2004)

    MATH  Google Scholar 

  14. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamiltonian paths in grid graphs. SIAM J. Computing 11, 676–686 (1982)

    Article  MATH  Google Scholar 

  15. Karger, D., Motwani, R., Ramkumar, G.D.S.: On approximating the longest path in a graph. Algorithmica 18, 82–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keil, J.M.: Finding Hamiltonian circuits in interval graphs. Inform. Proc. Lett. 20, 201–206 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156, 291–298 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ramalingam, G., Pandu Rangan, C.: A unified approach to domination problems on interval graphs. Inform. Proc. Lett. 27, 271–274 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Takahara, Y., Teramoto, S., Uehara, R.: Longest path problems on ptolemaic graphs. IEICE Trans. Inf. and Syst. 91-D, 170–177 (2008)

    Article  Google Scholar 

  20. Uehara, R., Uno, Y.: Efficient algorithms for the longest path problem. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 871–883. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Uehara, R., Valiente, G.: Linear structure of bipartite permutation graphs and the longest path problem. Inform. Proc. Lett. 103, 71–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vishwanathan, S.: An approximation algorithm for finding a long path in Hamiltonian graphs. In: Proc. 11th annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 680–685. ACM, New York (2000)

    Google Scholar 

  23. Zhang, Z., Li, H.: Algorithms for long paths in graphs. Theoret. Comput. Sci. 377, 25–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ioannidou, K., Mertzios, G.B., Nikolopoulos, S.D. (2009). The Longest Path Problem Is Polynomial on Interval Graphs. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics