Skip to main content

Stability of a Distributed Generation Network Using the Kuramoto Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5508))

Abstract

We derive a Kuramoto-like equation from the Cardell-Ilic distributed electrical generation network and use the resulting model to simulate the phase stability and the synchronization of a small electrical grid. It is well-known that a major problem for distributed generation is the frequency stability. This is a non linear problem and proper models for analysis are sorely lacking. In our model nodes are arranged in a regular lattice; the strength of their couplings are randomly chosen and allowed to vary as square waves. Although the system undergoes several synchronization losses, nevertheless it is able to quickly resynchronize. Moreover, we show that the synchronization rising-time follows a power-law.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chia, H., Ueda, Y.: Kuramoto Oscillators. Chaos Solitons & Fractals 12, 159 (2001)

    Article  Google Scholar 

  2. Kuramoto, Y.: Chemical Oscillation. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  3. Popovych, O., et al.: Phase Chaos in Coupled Oscillators. Phy. Rev. E 71, 06520 (2005)

    Article  MathSciNet  Google Scholar 

  4. Carreras, B., et al.: Evidence for SOC in a Time Series of Electric Power System Blackouts. Chaos 51, 1733 (2004)

    Google Scholar 

  5. Filatrella, G., et al.: Analysis of Power Grids using the Kuramoto Model. Eur. Phy. J. B 61, 485 (2008)

    Article  Google Scholar 

  6. Cardell, J., Ilic, M.: Maintaining Stability with Distribute Generation. IEEE Power Eng. Soc. Meeting (2004)

    Google Scholar 

  7. Canale, E., Monzon, P.: Gluing Kuramoto Coupled Oscillators Networks. In: IEEE Decision and Control Conf., New Orleans (2007)

    Google Scholar 

  8. Moreno, Y., Pacheco, A.: Synchronization of Kuramoto Oscillators in Scale-Free Networks. Europhys. Lett. 68(4), 603 (2004)

    Article  Google Scholar 

  9. Acebron, J., et al.: The Kuramoto Model. Rew. Mod. Phy. 77, 137 (2005)

    Article  Google Scholar 

  10. Fioriti, V., Rosato, V., Setola, R.: Chaos and Synchronization in Variable Coupling Kuramoto oscillators. Experimental Chaos Catania (2008)

    Google Scholar 

  11. http://www.iset.uni-kassel.de/publication/2007/2007_Power_Tech_Paper.pdf

  12. Carsten, J., et al.: Riso Energy Report (2000)

    Google Scholar 

  13. Cardell, J., Ilic, M.: The Control of Distributed Generation. Kluwer Academic Press, Dordrecht (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fioriti, V., Ruzzante, S., Castorini, E., Marchei, E., Rosato, V. (2009). Stability of a Distributed Generation Network Using the Kuramoto Models. In: Setola, R., Geretshuber, S. (eds) Critical Information Infrastructure Security. CRITIS 2008. Lecture Notes in Computer Science, vol 5508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03552-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03552-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03551-7

  • Online ISBN: 978-3-642-03552-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics