Skip to main content

Numerical Simulation of Supersonic Jet Noise

  • Chapter

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 104))

Abstract

Jets with complex shock-cell structures appear in numerous technological applications. Most supersonic jets used in aeronautics will be imperfectly expanded in flight, even those from carefully designed convergent-divergent nozzles. The adaption to the ambient pressure takes place in a sequence of oblique shocks which interact with the free shear layers and produce noise. The shock/shear-layer interaction emanates a broadband noise component. This may trigger the young shear layer at the nozzle, forming a feedback loop which results in a discrete noise component called screech . Both components are undesirable from structural and environmental (cabin noise) points of view. Screech tones are known to produce sound pressure levels of 160 dB and beyond.

The focus of this research project lies in the numerical simulation of jet screech. Different numerical methods are shown with LES and DNS applications of a planar rectangular and three-dimensional jet with overset grid techniques to include complex geometries for the jet nozzle. Furthermore, a shock-capturing method is developed for high-order aeroacoustic computations. It consists in applying an adaptive second-order conservative filtering to handle discontinuities, in combination with a background selective filtering to remove grid-to-grid oscillations. The magnitude of the shock-capturing filtering is determined dynamically from the flow solutions using a procedure based on a Jameson-like shock detector. Results obtained for a shock-propagation problem are shown to validate the method, which will be now used for the simulations of supersonic jets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berland, J., Bogey, C., Bailly, C.: Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm. Comp. Fluids 35(10), 1459–1463 (2005)

    Article  MathSciNet  Google Scholar 

  2. Berland, J., Bogey, C., Bailly, C.: Numerical study of screech generation in a planar supersonic jet. Phys. Fluids 19, 075105 (2007)

    Article  Google Scholar 

  3. Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194(1), 194–214 (2004)

    Article  MATH  Google Scholar 

  4. Bogey, C., Bailly, C.: Large Eddy Simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids 18(6), 065101 (2006)

    Article  Google Scholar 

  5. Bogey, C., Bailly, C.: On the application of explicit filtering to the variables or fluxes of linear equations. J. Comput. Phys. 225, 1211–1217 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bogey, C., de Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. (to appear, 2009); See also AIAA-2008-2968 (2008)

    Google Scholar 

  7. Daru, V., Gloerfelt, X.: Aeroacoustic computations using a high-order shock-capturing scheme. AIAA Journal 45(10), 2474–2486 (2007)

    Article  Google Scholar 

  8. Desquesnes, G., et al.: On the use of a high order overlapping grid method for coupling in CFD/CAA. J. Comp. Phys. 220, 355–382 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)

    Article  MATH  Google Scholar 

  10. Guenanff, R., Sagaut, P., Manoha, E., Terracol, M., Lewandowski, R.: Theoretical aspects of a multi-domain high-order method for CAA. AIAA Paper 2003–3117 (2003)

    Google Scholar 

  11. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA-81-1259 (1981)

    Google Scholar 

  12. Kim, J.W., Lee, D.J.: Adaptative nonlinear artificial dissipation model for Computational Aeroacoustics. AIAA Journal 39(5), 810–818 (2001)

    Article  Google Scholar 

  13. Krothapalli, A., Hsia, Y., Baganoff, D., Karamcheti, K.: The role of screech tones in mixing of an underexpanded rectangular jet. J. Sound Vib. 106, 119–143 (1986)

    Article  Google Scholar 

  14. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Physics 103(1), 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Marsden, O., Bogey, C., Bailly, C.: High-Order Curvilinear Simulations of Flows Around Non-Cartesian Bodies. J. Comp. Aeroacoustics 13(4), 731–748 (2004)

    Article  Google Scholar 

  16. Michalke, A.: On the inviscid instability of the hyperbolic-Tangent velocity profile. J. Fluid Mech. 19(4), 543–556 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  17. Panda, J., Raman, G., Zaman, K.B.M.Q.: Underexpanded screeching jets from circular rectangular and elliptic nozzles. AIAA-97-1623 (1997)

    Google Scholar 

  18. Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Physics 219, 489–497 (2006)

    Article  MATH  Google Scholar 

  19. Raman, B.: Cessation of screech in underexpanded jets. J. Fluid Mech. 336(1), 69–90 (1997)

    Article  Google Scholar 

  20. Schulze, J., Schmid, P., Sesterhenn, J.: Exponential time integration using Krylov subspaces. Int. J. Numer. Meth. Fluids (2008), doi:10.1002/fld.1902

    Google Scholar 

  21. Sesterhenn, J.: A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Computers & Fluids 30(1), 37–67 (2001)

    Article  MATH  Google Scholar 

  22. Sherer, S., Scott, J.: High order compact finite-difference methods on general overset grids. J. Comp. Phys. 210, 459–496 (2005)

    Article  MATH  Google Scholar 

  23. Suzuki, T., Lele, S.K.: Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139–167 (2003)

    Article  MATH  Google Scholar 

  24. Tam, C.K.W.: Benchmark problems and solutions. In: ICASE/LaRC Workshop on CAA, NASA CP 3300, pp. 1–13 (1995)

    Google Scholar 

  25. Tam, C.K.W.: The shock-cell structures and screech tone frequencies of rectangular and non-axisymmetric supersonic jets. J. Sound Vib. 121(1), 135–147 (1988)

    Article  Google Scholar 

  26. Tam, C.K.W., Shen, H.: Direct computation of nonlinear acoustic pulses using high order finite difference schemes. AIAA-93-4325 (1993)

    Google Scholar 

  27. Visbal, M.R., Gaitonde, D.V.: High-order-accurate methods for complex unsteady subsonic flows. AIAA Journal 37(10), 1231–1239 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulze, J. et al. (2009). Numerical Simulation of Supersonic Jet Noise. In: Brun, C., Juvé, D., Manhart, M., Munz, CD. (eds) Numerical Simulation of Turbulent Flows and Noise Generation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89956-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89956-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89955-6

  • Online ISBN: 978-3-540-89956-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics