Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 59))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Kader DZ (2001) Drought and gibberellic acid-dependent oxidative stress: effect on antioxidant defense system in two lettuce cultivars. Pak J Biol Sci 4:1138–1143

    Google Scholar 

  • Alconero R (1983) Regeneration of plants from cell suspensions of Lactuca saligna, Lactuca sativa and Lactuca serriola. HortScience 18:305–307

    Google Scholar 

  • Allende A, Artés F (2003) UV-C radiation and a novel technique for keeping quality of fresh processed “Lollo Rosso” lettuce. Food Res Int 36:739–746

    Google Scholar 

  • Ampomah-Dwamena C, Conner AJ, Fautrier AG (1997) Genotype response of lettuce cotyledons to regeneration in vitro. Sci Hort 71:137–145

    CAS  Google Scholar 

  • Anderson WP (1996) Weed science, principles and applications. West Publishing, Minneapolis, 388 pp

    Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    CAS  Google Scholar 

  • Arun B, Joshi AK, Chand R, Singh BD (2003) Wheat somaclonal variants showing earliness, improved spot blotch resistance and higher yields. Euphytica 132:235–241

    Google Scholar 

  • Beltrán D, Selma MV, Marín A, Gil MI (2005) Ozonated water extends the shelf life of fresh-cut lettuce. J Agric Food Chem 53:5654–5663

    PubMed  Google Scholar 

  • Bennett MH, Mansfield JW, Lewis MJ, Beale MH (2002) Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.). Phytochemistry 60:255–261

    PubMed  CAS  Google Scholar 

  • Berry SF, Lu DY, Pental D, Cocking EC (1982) Regeneration of plants from protoplasts of Lactuca sativa L. Z Pflanzenphysiol 108:31–38

    Google Scholar 

  • Beuchat LR, Adler BB, Lang MM (2004) Efficacy of chlorine and a peroxyacetic acid sanitizer in killing Listeria monocytogenes on Iceberg and Romaine lettuce using simulated commercial processing conditions. J Food Prot 67:1238–1242

    PubMed  CAS  Google Scholar 

  • Bidawid S, Farber JM, Sattar SA (2001) Survival of the hepatitis A virus on modified atmosphere-packaged (MAP) lettuce. Food Microbiol 18:95–102

    CAS  Google Scholar 

  • Brown C, Lucas JA, Crute IR, Walkey DGA, Power JB (1986) An assessment of genetic variability in somaclonal lettuce plants (Lactuca sativa) and their offspring. Ann Appl Biol 109:391–407

    Google Scholar 

  • Cheng M, Lowe BA, Spencer M, Ye U, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol-Plant 40:31–45

    Google Scholar 

  • Cho EA, Lee Ca, Kim YS, Baek SH, de los Reyes BG, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). Mol Cells 19:16–22

    PubMed  CAS  Google Scholar 

  • Choi HW, Lemaux PG, Cho MJ (2000) High frequency of cytogenetic aberrations in transgenic oat (Avena sativa L.) plants. Plant Sci 156:85–94

    PubMed  CAS  Google Scholar 

  • Choi Y-J, Tomás-Barberán, Saltveit ME (2005) Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols. Post Harvest Biol Technol 37:47–55

    CAS  Google Scholar 

  • Chupeau MC, Bellini C, Guerche P, Maisonneuve B, Vastra G, Chupeau Y (1989) Transgenic plants of lettuce (Lactuca sativa) obtained through electroporation of protoplasts. Bio/Technology 7:503–508

    Google Scholar 

  • Chupeau M, Maisonneauve B, Bellec Y, Chupeau Y (1994) A Lactuca universal hybridizer, and its use in creation of fertile interspecific somatic hybrids. Mol Gen Genet 245:139–145

    PubMed  CAS  Google Scholar 

  • Curtis IS, Power JB, Blackhall NW, Laat AMM de, Davey MR (1994a) Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. J Exp Bot 45:1441–1449

    CAS  Google Scholar 

  • Curtis IS, Power JB, McCabe MS, Laat AMM de, Davey MR (1994b) Promoter-GUS fusions in lettuce. Int Congr Plant Mol Biol Abstr 4:1682

    Google Scholar 

  • Curtis IS, Davey MR, Power JB (1995) Leaf disk transformation. In: Gartland KMA, Davey MR (eds) Methods in molecular biology, vol 44: Agrobacterium protocols. Humana, Totowa, pp 59–70

    Google Scholar 

  • Curtis IS, He CP, Power JB, Mariotti D, Laat AMM de, Davey MR (1996a) The effects of Agrobacterium rhizogenes rolAB genes in lettuce. Plant Sci 115:123–135

    CAS  Google Scholar 

  • Curtis IS, He CP, Scott R, Power JB, Davey MR (1996b) Genomic male sterility in lettuce, a baseline for the production of F1 hybrids. Plant Sci 113:113–119

    CAS  Google Scholar 

  • Curtis IS, He C, Jordi WJR, Davelaar E, Power JB, Laat AMM de, Davey MR (1999) Promoter deletions are essential for transformation of lettuce by the T-cyt gene: the phenotypes of transgenic plants. Ann Bot 83:559–567

    CAS  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    PubMed  CAS  Google Scholar 

  • Daub M (1986) Tissue culture and the selection of resistance to plant pathogens. Annu Rev Phytopathol 24:159–186

    Google Scholar 

  • Davey MR, Power JB, Lowe KC (2000a) Plant protoplasts. In: Spier RA (ed) Encyclopedia of cell technology. Wiley, New York, pp 1034–1043

    Google Scholar 

  • Davey MR, Lowe KC, Power JB (2000b) Protoplast fusion for the generation of unique plants. In: Spier RA (ed) Encyclopedia of cell technology. Wiley, New York, pp 1090–1096

    Google Scholar 

  • Davey MR, McCabe MS, Mohapatra U, Power JB (2001) Genetic manipulation of lettuce. In: Khachatourians GG, McHughen A, Scorza R, Nip W-K, Hui YH (eds) Transgenic plants. Dekker, New York, pp 613–635

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005a) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    PubMed  CAS  Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005b) Plant protoplast technology: status and applications. (SIVB Congr Symp Proc: thinking outside the cell) In Vitro Cell Dev Biol-Plant 41:202–212

    CAS  Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005c) Plant protoplast technology: current status. Acta Physiol Plant 27:117–129

    CAS  Google Scholar 

  • Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1998) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17:192–196

    Google Scholar 

  • Del Nobile MA, Baiano A, Benedetto A, Massignan L (2006) Respiration rate of minimally processed lettuce as affected by packaging. J Food Eng 74:60–69

    Google Scholar 

  • Dinant S, Lot H (1992) Lettuce mosaic virus. Plant Pathol 41:528–542

    Google Scholar 

  • Dinant S, Blaise F, Kusiak C, Astier-Manifacier S, Albouy J (1993) Heterologous resistance to potato virus Y in transgenic tobacco plants expressing the coat protein gene of lettuce mosaic potyvirus. Phytopathology 83:818–824

    CAS  Google Scholar 

  • Dinant S, Maisonneuve B, Albouy J, Chupeau Y, Chupeau M-C, Bellec Y, Gaudefroy F, Kusiak C, Souche S, Robaglia C, Lot H (1997) Coat protein gene-mediated protection in Lactuca sativa against lettuce potyvirus strains. Mol Breed 3:75–86

    CAS  Google Scholar 

  • Dubois V, Botton E, Meyer C, Rieu A, Bedu M, Maisonneuve B, Mazier M (2005) Systematic silencing of a tobacco nitrate reductase transgene in lettuce (Lactuca sativa L.). J Exp Bot 56:2379–2388

    PubMed  CAS  Google Scholar 

  • Dufresne PJ, Jenni S, Fortin MG (2004) FRET hybridization probes for the rapid detection of disease resistance alleles in plants: detection of corky root resistance in lettuce. Mol Breed 13:323–332

    CAS  Google Scholar 

  • Dziechciarková M, Lebeda A, Doležalová I, Astley D (2004) Characterization of Lactuca spp germplasm by protein and molecular markers — a review. Plant Soil Environ 50:47–58

    Google Scholar 

  • Engler DE, Grogan RG (1984) Variation in lettuce plants regenerated from protoplasts. J Hered 75:426–430

    Google Scholar 

  • Enomoto S, Ohyama K (1989) Regeneration of plants from protoplasts of lettuce and its wild species. In: Bajaj YPS (ed) Plant protoplasts and genetic engineering I. (Biotechnology in agriculture and forestry, vol 8) Springer, Berlin Heidelberg New York, pp 217–226

    Google Scholar 

  • Enomoto S, Itoh H, Ohshima M, Ohashi Y (1990) Induced expression of a chimaeric gene construct in transgenic lettuce plants using tobacco pathogenesis-related protein gene promoter region. Plant Cell Rep 9:6–9

    CAS  Google Scholar 

  • FAOSTAT (2006) FAO database. Available at http://apps.fao.org/

    Google Scholar 

  • Falk BW (1996) Basic approaches to lettuce virus control. Iceberg Lettuce Advisory Board Annu Rep 1996:70–74

    Google Scholar 

  • Faus I (2000) Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol 53:145–151

    PubMed  CAS  Google Scholar 

  • Finegan J, McElroy D (1994) Transgene inactivation: plants fight back! Bio/Technology 12:883–888

    Google Scholar 

  • Frijters ACJ, Zhang Z, Van Damme M, Wang GL, Ronald PC, Michelmore RW (1997) Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce. Theor Appl Genet 94:390–399

    CAS  Google Scholar 

  • Garcia A, Mount JR, Davidson PM (2003) Ozone and chlorine treatment of minimally processed lettuce. J Food Sci 68:2747–2751

    CAS  Google Scholar 

  • Garibaldi A, Gilardi G, Gullino ML (2004) Varietal resistance of lettuce to Fusarium oxysporum sp. lactucae. Crop Prot 23:845–851

    Google Scholar 

  • Garratt LC, Linforth R, Taylor AJ, Lowe KC, Power JB, Davey MR (2005) Metabolite fingerprinting in transgenic lettuce. Plant Biotechnol J 3:165–174

    PubMed  CAS  Google Scholar 

  • Gaudreau L, Charbonneau J, Vezina LP, Gosselin A (1995) Effects of photoperiod and photosynthetic photon flux on nitrate content and nitrate reductase activity in greenhouse-grown lettuce. J Plant Nutr 18:437–453

    CAS  Google Scholar 

  • Gilberton RL (1996) Management and detection of LMV: production of LMV resistant lettuce and LMV coat protein antibodies. Iceberg Lettuce Advisory Board Annu Rep 1996:78–81

    Google Scholar 

  • Gómez-López VM, Devlieghere F, Bonduelle V, Debevere J (2005) Intense light pulses decontamination of minimally processed vegetables and their shelf-life. Int J Food Microbiol 103:79–89

    PubMed  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100:658–664

    CAS  Google Scholar 

  • Grube RC, Ryder EJ (2003) Romaine lettuce breeding lines with resistance to lettuce dieback caused by tombusviruses. HortScience 38:627–628

    Google Scholar 

  • Grube RC, Ryder EJ (2004) Identification of lettuce (Lactuca sativa L.) germplasm with genetic resistance to drop caused by Sclerotinia minor. J Am Soc Hortic Sci 129:70–76

    Google Scholar 

  • Grube RC, Wintermantel WM, Hand P, Aburomia R, Pink DAC, Ryder EJ (2005) Genetic analysis and mapping of resistance to lettuce dieback: a soilborne disease caused by tombusviruses. Theor Appl Genet 110:259–268

    PubMed  CAS  Google Scholar 

  • Gunes A, Post WHK, Aktas M (1995) Effect of partial replacement of nitrate by NH4-N, urea-N and amino acid-N in nutrient solution on nitrate accumulation in lettuce (Lactuca sativa). Agrochimica 39:326–333

    CAS  Google Scholar 

  • Gyulai G, Mester Z, Kiss J, Szeman L, Idnurm A, Heszky L (2003) Somaclonal breeding of reed canarygrass (Phalaris arundinacea L.). Grass Forage Sci 58:210–214

    Google Scholar 

  • Hobbs SLA, Warkentin TD, Delong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    PubMed  CAS  Google Scholar 

  • Hunter DC, Burritt DJ (2004) Light quality influences adventitious shoot production from cotyledon explants of lettuce (Lactuca sativa L.). In Vitro Cell Dev Biol Plant 40:215–220

    Google Scholar 

  • Jain MS (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    CAS  Google Scholar 

  • Jeuken MJW, Lindhout P (2002) Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance. Theor Appl Genet 105:384–391

    PubMed  CAS  Google Scholar 

  • Jeuken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet 109:394–401

    PubMed  CAS  Google Scholar 

  • Johnson WC, Jackson LE, Ochoa O, Wijk R van, Peleman J, St. Clair DA, Michelmore RW (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073

    CAS  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    PubMed  CAS  Google Scholar 

  • Kang H-M, Saltveit ME (2003) Wound-induced increases in phenolic content of fresh-cut lettuce is reduced by a short immersion in aqueous hypertonic solutions. Postharvest Biol Technol 29:271–277

    CAS  Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302

    Google Scholar 

  • Kesseli R, Ochoa O, Michelmore R (1991) Variation at RFLP loci in Lactuca spp and origin of cultivated lettuce (L. sativa). Genome 34:430–436

    Google Scholar 

  • Kim JH, Botella JR (2004) Etr-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation. Plant Cell Tissue Organ Cult 78:69–73

    CAS  Google Scholar 

  • Kim JG, Luo Y, Saftner RA, Gross KC (2005a) Delayed modified atmosphere packaging of fresh-cut Romaine lettuce: Effects on quality maintenance and shelf-life. J Am Soc Hortic Sci 130:116–123

    Google Scholar 

  • Kim JG, Luo Y, Tao Y, Saftner RA, Gross KC (2005b) Effect of initial oxygen concentration and film oxygen transmission rate on the quality of fresh-cut romaine lettuce. J Sci Food Agric 85:1622–1630

    CAS  Google Scholar 

  • Kisiel W, Stojakowska A, Marlaz J, Kohlmünzer S (1995) Sesquiterpene lactones in Agrobacterium rhizogenes-transformed hairy root culture of Lactuca sativa. Phytochemistry 40:1139–1140

    CAS  Google Scholar 

  • Koevary K, Rappaport L, Morris LL (1978) Tissue culture propagation of head lettuce. HortScience 13:39–41

    Google Scholar 

  • Lang MM, Harris LJ, Neuchat LR (2004) Survival and recovery of Escherichia coli 0157:H7, Salmonella and Listeria monocytogenes on lettuce and parsley as affected by method of inoculation, time between inoculation and analysis, and treatment with chlorinated water. J Food Prod 67:1092–1103

    Google Scholar 

  • Lebeda A, Petrželová I (2004) Variation and distribution of virulence phenotypes of Bremia lactucae in natural populations of Lactuca serriola. Plant Pathol 53:316–324

    Google Scholar 

  • Lee S-Y, Costello M, Kang D-H (2004) Efficacy of chlorine dioxide gas as a sanitizer of lettuce leaves. J Food Prot 67:1371–1376

    PubMed  CAS  Google Scholar 

  • Lelivelt C, McCabe M, Newell C, deSnoo B, Dun K van, Birch-Machin I, Gray J, Mills K, Nugent J (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    PubMed  CAS  Google Scholar 

  • Maisonneuve B, Chupeau MC, Bellec Y, Chupeau Y (1995) Sexual and somatic hybridization in the genus Lactuca. Euphytica 85:281–285

    Google Scholar 

  • Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28

    PubMed  CAS  Google Scholar 

  • Mallory-Smith CA, Thill DC, Dial MJ, Zemetra RS (1990) Inheritance of sulfonylurea resistance in Lactuca spp. Weed Technol 4:787–790

    CAS  Google Scholar 

  • Martin-Diana AB, Rico D, Barry-Ryan C, Frias JM, Mulcahy J, Henehan GTM (2005) Calcium lactate washing treatments for salad-cut iceberg lettuce: effect of temperature and concentration on quality retention parameters. Food Res Int 38:729–740

    CAS  Google Scholar 

  • Matsumoto E (1987) Production of somatic hybrids between Lactuca sativa and L. serriola by cell fusion. Jpn J Breed 35:134–135

    Google Scholar 

  • Matsumoto E (1991) Interspecific somatic hybridisation between lettuce (Lactuca sativa) and wild species (L. virosa). Plant Cell Rep 9:531–534

    Google Scholar 

  • Mazier M, German-Retana S, Flamain F, Dubois V, Botton E, Sarnette V, Le Gall O, Candresse T, Maisonneuve B (2004) A simple and efficient method for testing lettuce mosaic virus resistance in in vitro cultivated lettuce. J Virol Methods 116:123–131

    PubMed  CAS  Google Scholar 

  • McCabe MS, Mohapatra U, Debnath SC, Power JB, Davey MR (1999a) Integration, expression and inheritance of two linked T-DNA marker genes in transgenic lettuce. Mol Breed 5:329–344

    CAS  Google Scholar 

  • McCabe MS, Schepers F, Arend A van der, Mohapatra U, Laat AMM de, Power JB, Davey MR (1999b) Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE promoter-bar gene compared with a CaMV 35S-bar gene. Theor Appl Genet 99:587–592

    CAS  Google Scholar 

  • McCabe MS, Garratt LC, Schepers F, Jordi WJRM, Stoopen GM, Davelaar E, Rhijn JHA van, Power JB, Davey MR (2001) Effect of P SAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    PubMed  CAS  Google Scholar 

  • McKellar RC, Odumeru J, Zhou T, Harrison A, Mercer DG, Young JC, Lu X, Boulter J, Piyasena P, Karr S (2004) Influence of a commercial warm chlorinated water treatment and packaging on the shelf-life of ready-to-use lettuce. Food Res Int 37:343–354

    CAS  Google Scholar 

  • Michelmore RW (1996) Genetic variation in lettuce. Iceberg Lettuce Advisory Board Annu Rep 1996:62–65

    Google Scholar 

  • Michelmore RW, Eash JA (1988) Tissue culture of lettuce. In: Evans DA, Sharp WR, Amirato PV (eds) Handbook of plant cell culture, vol 4. Collier MacMillan, London, pp 512–551

    Google Scholar 

  • Michelmore RW, Marsh E, Seely S, Landry B (1987) Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens. Plant Cell Rep 6:439–442

    CAS  Google Scholar 

  • Mizutani T, Tanaka T (2003) Genetic analyses of isozyme in lettuce, Lactuca sativa, and its relatives. J Jpn Soc Hortic Sci 72:122–127

    CAS  Google Scholar 

  • Mizutani T, Liu XJ, Tashiro Y, Miyazaki S, Shimanasaki K (1989) Plant regeneration and cell fusion of protoplasts from lettuce cultivars and related wild species in Japan. Bull Fac Agric Saga Univ 67:109–118

    Google Scholar 

  • Mohapatra U, McCabe MS, Power JB, Schepers F, Van der Arend A, Davey MR (1999) Expression of the bar gene confers herbicide resistance in transgenic lettuce. Transgenic Res 8:33–44

    CAS  Google Scholar 

  • Mou B, Bull C (2004) Screening lettuce germplasm for new sources of resistance to corky root. J Am Soc Hortic Sci 129:712–716

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Negrouk V, Eisner G, Lee H-I, Han K, Taylor D, Wong HC (2005) Highly efficient transient expression of functional recombinant antibodies in lettuce. Plant Sci 169:433–438

    CAS  Google Scholar 

  • Newell CA (2000) Plant transformation technology. Developments and applications. Mol Biotechnol 16:53–65

    PubMed  CAS  Google Scholar 

  • Nishio T, Sato T, Mori K, Takayanagi K (1988) Simple and efficient protoplast culture procedure of lettuce, Lactuca sativa L. Jpn J Breed 38:165–171

    Google Scholar 

  • Okubara PA, Arroyo-Garcia R, Shen KA, Mazier M, Meyers BC, Ochoa OE, Kim S, Yang C-H, Michelmore RW (1997) A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance. Mol Plant Microbe Interact 10:970–977

    PubMed  CAS  Google Scholar 

  • Pang S-Z, Jan F-J, Carney K, Stout J, Tricoli DM, Quemada HD, Gonsalves D (1996) Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. Plant J 9:899–909

    CAS  Google Scholar 

  • Pileggi M, Pereira AAM, Santos Silva J dos, Pileggi AV, Verma DPS (2001) An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Braz Arch Biol Technol 44:191–196

    CAS  Google Scholar 

  • Polanco C, Ruiz ML (2002) AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. Plant Sci 162:817–824

    CAS  Google Scholar 

  • Pröls F, Meyer P (1992) The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J 2:465–475

    PubMed  Google Scholar 

  • Rahman MH, Rajora OP (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell Rep 20:531–536

    CAS  Google Scholar 

  • Revers F, Lot H, Souche S, LeGall O, Candresse T, Dunez J (1997) Biological and molecular variability of lettuce mosaic virus isolates. Phytopathology 87:397–403

    CAS  Google Scholar 

  • Ryder EJ (1986) Lettuce breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI Publishing, Westport, pp 433–474

    Google Scholar 

  • Ryder EJ (1999) Crop production science in horticulture. Lettuce, endive and chicory. CABI Publishing, Wallingford, pp 208

    Google Scholar 

  • Ryder EJ (2002) A mild systemic reaction to lettuce mosaic virus in lettuce: Inheritance and interaction with an allele for resistance. J Am Soc Hortic Sci 127:814–818

    Google Scholar 

  • Ryder EJ, Kim ZH, Waycott W (1999) Inheritance and epistasis studies of chlorophyll deficiency in lettuce. J Am Soc Hortic Sci 124:636–640

    CAS  Google Scholar 

  • Sahijram L, Soneji JR, Bollamma KT (2003) Analyzing somaclonal variation in micropropagated bananas (Musa spp). In Vitro Cell Dev Biol Plant 39:551–556

    Google Scholar 

  • Saltveit ME (2004) Effect of 1-methylcyclopropene on phenylpropanoid metabolism, the accumulation of phenolic compounds, and browning of whole and fresh-cut “iceberg” lettuce. Postharvest Biol Technol 34:75–80

    CAS  Google Scholar 

  • Santamaria P (1997) Occurrence of nitrate and nitrite in vegetables and total dietary intakes. Industrie Alimentari 36:1329–1334

    CAS  Google Scholar 

  • Sasaki H (1975) Physiological and morphological studies on development of vegetable crops. III. Adventitious bud formation of callus tissue derived from lettuce hypocotyls. J Jpn Soc Hortic Sci 44:138–143

    Google Scholar 

  • Sasaki H (1979a) Physiological and morphological studies on development of vegetable crops. IV. Effect of various media on the adventitious bud formation of lettuce hypocotyls tissue cultured in vitro. J Jpn Soc Hortic Sci 47:479–484

    Google Scholar 

  • Sasaki H (1979b) Physiological and morphological studies on development of vegetable crops. VI. Effect of several auxins, cytokinins and cytokinin-ribosides on the adventitious bud formation of lettuce hypocotyl tissue cultured in vitro. J Jpn Soc Hortic Sci 48:67–72

    CAS  Google Scholar 

  • Sasaki H (1979c) Physiological and morphological studies on adventitious bud formation of lettuce hypocotyl tissue cultured in vitro. J Jpn Soc Hortic Sci 48:67–72

    CAS  Google Scholar 

  • Sasaki H (1982) Effect of temperature and light on adventitious bud formation of lettuce hypocotyl tissue culture in vitro. J Jpn Soc Hortic Sci 51:187–194

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    CAS  Google Scholar 

  • Sibi M (1976) La notation de programme genetique chez les vegetaux superieurs. II Expt I. Aspect — Production of variants by in vivo tissue culture of Lactuca sativa L. Increase in vigour in outcrosses. Ann Amelior Plant 26:523–547

    Google Scholar 

  • Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–2353

    PubMed  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122

    PubMed  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    CAS  Google Scholar 

  • Sun H-J, Cui M-l, Ma B, Ezura H (2006) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620–626

    PubMed  CAS  Google Scholar 

  • Takano T, Kabeya H, Isono K (1988) Multiplication of lettuce F1 hybrids by tissue culture. Sci Rep Fac Agric Meijo Univ 24:17–28

    CAS  Google Scholar 

  • Tanaka T, Matsumura T, Morinaga Y (1991) Studies on the protoplast culture 1: procedure of protoplast culture of lettuce Lactuca sativa L. Proc Fac Agric Kyushu Tokai Univ 10:29–36

    Google Scholar 

  • Teng W-L, Lin C-P, Liu Y-J (1993) Regenerating lettuce from suspension culture in a 2-liter bioreactor. Hort Science 28:669–671

    Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184

    Google Scholar 

  • Tonks DJ, Westra P (1997) Control of sulfonylurea-resistant kochia (Kochia scorpia). Weed Technol 11:270–276

    CAS  Google Scholar 

  • Torres AC, Cantliffe DJ, Laughner B, Bieniek M, Nagata R, Ashraf M, Ferl RJ (1993) Stable transformation of lettuce cultivar South Bay from cotyledon explants. Plant Cell Tissue Organ Cult 34:279–285

    CAS  Google Scholar 

  • Tsuchiya N, Yoshida K, Usui T, Tsukada M (2004) “Shinano Hope”, a Fusarium root rot-resistant lettuce. J Jpn Soc Hortic Sci 73:429–434

    Google Scholar 

  • USDA (2006) Vegetables 2005, summary. National Agricultural Statistics Service, Washington, D.C. Available at http://www.usda.gov/

    Google Scholar 

  • Vanjildorj E, Bae T-W, Riu K-Z, Kim S-Y, Lee H-Y (2005) Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce (Lactuca sativa). Plant Cell Tissue Organ Cult 83:41–50

    CAS  Google Scholar 

  • Vries IM de (1990) Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca Compositae). Plant Syst Evol 171:233–248

    Google Scholar 

  • Vries IM de (1997) Origin and domestication of Lactuca sativa L. Genet Res Crop Evol 171:233–248

    Google Scholar 

  • Walters C, Wheeler L, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiology 48:229–244

    PubMed  Google Scholar 

  • Waycott W, Fort SB, Ryder EJ, Michelmore RW (1999) Mapping morphological genes relative to molecular markers in lettuce (Lactuca sativa L.). Heredity 82:245–251

    PubMed  CAS  Google Scholar 

  • Webb CL (1992) Transformation and somatic hybridization for lettuce (Lactuca sativa) improvement. PhD thesis, University of Nottingham, Nottingham

    Google Scholar 

  • Webb CL, Davey MR, Lucas JA, Power JB (1994) Plant regeneration from mesophyll protoplasts of Lactuca perennis. Plant Cell Tissue Organ Cult 38:77–79

    Google Scholar 

  • Witsenboer, Kesseli RV, Fortin MG, Stanghellini, Michelmore RW (1995) Sources and genetic structure of a cluster of genes for resistance to three pathogens in lettuce. Theor Appl Genet 91:178–188

    CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    PubMed  CAS  Google Scholar 

  • Xinrun Z, Conner AJ (1992) Genotype effects on tissue culture response of lettuce cotyledons. J Genet Breed 46:287–290

    Google Scholar 

  • Xu Z-F, Teng W-L, Chye M-L (2004) Inhibition of endogenous trypsin-and chymotrypsin-like activities in transgenic lettuce expressing heterogeneous proteinase inhibitor SaPIN2a. Planta 218:623–629

    PubMed  CAS  Google Scholar 

  • Yang C-H, Carroll B, Schofield S, Jones J, Michelmore R (1993) Transinactivation of Ds elements in plants of lettuce (Lactuca sativa). Mol Gen Genet 241:389–398

    PubMed  CAS  Google Scholar 

  • Yaun BR, Sumner SS, Eifert JD, Marcy JE (2004) Inhibition of pathogens on fresh produce by ultraviolet energy. Int J Food Microbiol 90:1–8

    PubMed  Google Scholar 

  • Zhou X, Han Y, Yang W, Xi T (1992) Somatic embryogenesis and analysis of peroxidase in cultured lettuce (Lactuca sativa L.) cotyledons. Ann Bot 69:97–100

    CAS  Google Scholar 

  • Zohary D (1991) The wild genetic resources of cultivated lettuce (Lactuca sativa L.). Euphytica 53:6–77

    Google Scholar 

  • Zuo X, Zhang Y, Wu B, Chang X, Ru B (2002) Expression of the mouse metallothionein mutant ββ-cDNA in the lettuces (Lactuca sativa L.). Chin Sci Bull 47:558–562

    CAS  Google Scholar 

  • Zupan JR, Zambryski P (1995) Update on plant transformation. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davey, M.R., Anthony, P., Van Hooff, P., Power, J.B., Lowe, K.C. (2007). Lettuce. In: Pua, EC., Davey, M.R. (eds) Transgenic Crops IV. Biotechnology in Agriculture and Forestry, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36752-9_12

Download citation

Publish with us

Policies and ethics