Skip to main content

Metal Resistance in Plants with Particular Reference to Aluminium

  • Chapter
  • 3574 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrland S (1968) Thermodynamics of complex formation between hard and soft acceptors and donors. Nature and scope of the classification of acceptors and donors as hard and soft. Struct Bonding 5:118–123

    Google Scholar 

  • Akeson MA, Munns DN, Burau RG (1989) Adsorption of Al3+ to phosphatidylcholine vesicles. Biochim Biophys Acta 986:33–40

    Article  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, CRC Press, Boca-Raton Ann-Arbor London Tokyo, pp 77–104

    Google Scholar 

  • Asada K (1992) Production and scavenging of active oxygen in chloroplasts. In: Scandalios JG (ed) Photoinhibition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp173–192

    Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64

    Google Scholar 

  • Basu U, Godbold D, Taylor GJ (1994) Aluminum resistance in Triticum aestivum associated with enhanced exudation of malate. J Plant Physiol 144:747–753

    Google Scholar 

  • Berlett RJ, Riego DC (1972) Effect of chelation on the toxicity of aluminum. Plant Soil 37:419–423

    Article  Google Scholar 

  • Boscolo PRS, Menossi M, Jorgea RA (2003) Aluminium-induced oxidative stress in maize. Phytochemistry 62:181–189

    Article  Google Scholar 

  • Bradshaw AD (1952) Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature 169:1098.

    Article  Google Scholar 

  • Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Rad Biol Med 18:1033–1077

    Article  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  Google Scholar 

  • Chaterjee KK (1993) An Introduction to Mineral Economics, Wiley Eastern Limited, Bombay, New Delhi, Calcutta, Hyderabad, Banglore, Guwahati, Lucknow, Madras, Pune

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Google Scholar 

  • Darko E, Ambrus H, Stefanovits-Banyai E, Fodor J, Bakos F, Barnabas B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  Google Scholar 

  • Dean JG, Bosqui FL, Lanouette VH (1972) Removing heavy metals from waste water. Environ Sci Technol 6:518–525

    Article  Google Scholar 

  • Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the Arabidopsis mutant alr-104_is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19–27

    Article  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993a) Aluminum tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    Google Scholar 

  • Dinkelaker B, Romheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292

    Article  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    Google Scholar 

  • Evans AM (1995) Ore, mineral economics and mineral exploration. In: Evans AM (ed) Introduction to Mineral Exploration, Chap. 1, Blackwell Science, Oxford

    Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927

    Article  Google Scholar 

  • Fergusson JE (1990) The Heavy Elements: Chemistry, Environmental Impact and Health Effects. Pergamon Press, Oxford New-York Beijing Fankfurt Sao-Paulo Sudney Tokyo Toronto

    Google Scholar 

  • Forstner U, Wittmann GTW (1979) Metal Pollution in the Aquatic Environment. Springer-Verlag, New York

    Google Scholar 

  • Foy CD, Burns GR, Brown JC, Fleming AL (1965) Differential aluminum tolerance of two wheat varieties associated with plant-induced pH changes around their roots. Soil Sci Soc Am Proc 29:64–67

    Google Scholar 

  • Foy CD, Fleming AL, Burns GR, Arninger WH (1967) Characterization of differential aluminum tolerance among varieties of wheat and barley. Soil Sci Soc Am Proc 31:513–52

    Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  Google Scholar 

  • Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    Article  Google Scholar 

  • Guo T, Zhang G, Zhou M, Wu F, Chen J (2004) Effects of aluminium and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different al resistance. Plant Soil 258:241–248

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free Radical in Biology and Medicine. Clarendon Press, Oxford

    Google Scholar 

  • Haug A (1984) Molecular aspects of aluminum toxicity. Crit Rev Plant Sci 1:345–373

    Google Scholar 

  • Henderson M, Ownby JD (1991) The role of root cap mucilage secretion in aluminum tolerance in wheat. Curr Top Plant Biochem Physiol 10:134–141

    Google Scholar 

  • Horst WJ, Asher CJ, Cakmak I, Szulkiewica P, Wissemeier AH (1992) Short-term responses of soybean roots to aluminium. J Plant Physiol 140:174–178

    Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    Google Scholar 

  • Klimashevsky EL, Bernadskaya ML (1973) The activity of ATPase and acid phosphatase in the root growth zones of two pea varieties with different tolerance to toxic Al ions. Sov Plant Physiol 20:257–263

    Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  Google Scholar 

  • Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol 126:397–410

    Google Scholar 

  • Koyama H, Ojima K, Yamaya T (1990) Utilization of anhydrous aluminum phosphate as a sole source of phosphorus by a selected carrot cell line. Plant Cell Physiol 31:173–177

    Google Scholar 

  • Kuo MC, Kao CH (2003) Alumiunium effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biol Plant 46:149–152

    Article  Google Scholar 

  • Larsen PB, Degenhardt J, Tai C-Y, Stenzler LM, Howell SH, Kochian LV (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:9–18

    Article  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  Google Scholar 

  • Lazof DB, Goldsmith JG, Rufty TW, Linton RW (1994) Rapid uptake of aluminum into cells of intact soybean root tips. A microanalytical study using secondary ion mass spectroscopy. Plant Physiol 106:1107–1114

    Google Scholar 

  • Lidon FC, Henriques FS (1993) Copper-mediated toxicity in rice chloroplasts. Photosynthetica 29:385–400

    Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317

    Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    Article  Google Scholar 

  • Ma JF, Kiradate S, Nomoto K, Iwashita T, Matsumoto H (1997c) Internal detoxification mechanism of Al in hydrangea. Identification of Al form in the leaves. Plant Physiol 113:1033–1039

    Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H (1997a) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol 38:1019–1025

    Google Scholar 

  • Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997b) Detoxifying aluminum with buckwheat. Nature 390:569–570

    Article  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  Google Scholar 

  • Manahan SE (1990) Environmental Chemistry. Lewis Publishers, Boston

    Google Scholar 

  • Martell AE, Motekaitis RJ (1989) Coordination chemistry and speciation of Al (III) in aqueous solution. In: Lewis I, Timothy E (eds) Environmental Chemistry and Toxicology of Aluminium, Lewis Publishers, Chelsea, MI, pp 3–17

    Google Scholar 

  • Martin RB (1988) Bioinorganic chemistry of aluminum. In: Siegel H, Siegel A (eds) Metal Ions in Biological Systems: Aluminum and its Role in Biology, vol 24, Marcel Dekker, New York, pp 2–57

    Google Scholar 

  • Mason B (1958) Principle of Geochemistry. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminium toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  Google Scholar 

  • Misra SG, Mani D (1991) Soil pollution. Ashish Publishing House, New Delhi

    Google Scholar 

  • Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978–1987

    Article  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans. Root exudation of citric acid. Plant Physiol 96:737–743

    Google Scholar 

  • Miyasaka SC, Kochian LV, Shaff JE, Foy CD (1989) Mechanism of aluminum tolerance in wheat. An investigation of genotypic differences in rhizosphere pH, K+, and H+ transport, and root-cell membrane potentials. Plant Physiol 91:1188–1196

    Google Scholar 

  • Muchovej RCM, Allen VG, Martens DC, Muchovej JJ (1988) Effects of aluminum chelates in nutrient solution on the growth and composition of ryegrass. J Plant Nutr 11:117–129

    Google Scholar 

  • Mugwira LM, Patel SU (1977) Root zone pH changes and ion uptake imbalances by triticale, wheat, and rye. Argon J 69:719–722

    Google Scholar 

  • Mugwira LM, Elgawahry SM, Patel SU (1976) Differential tolerances of triticale, wheat, rye and barley to aluminum in nutrient solution. Agron J 68:782–786

    Google Scholar 

  • Mugwira LM, Elgawahry SM, Patel SU (1978) Aluminum tolerance in triticale, wheat and rye as measured by root growth characteristics and aluminum concentration. Plant Soil 50:681–690

    Article  Google Scholar 

  • Nordstrom DK, May HM (1996) Aqueous equilibrium data for mononuclear aluminum species. In: Sposito G (ed) Environment Chemistry of Aluminum, CRC Press, Boca Raton FL, pp 39–80

    Google Scholar 

  • Ochiai E-I (1977) Bioinorganic Chemistry: An Introduction. Allyn and Bacon, Boston London Sydney Toronto

    Google Scholar 

  • Ojima K, Ohira K (1988) Aluminum-tolerance and citric acid release from a stressselected cell line of carrot. Commun Soil Sci Plant Anal 19:1229–1238

    Google Scholar 

  • Ojima K, Abe H, Ohira K (1984) Release of citric acid into the medium by aluminumtolerant carrot cells. Plant Cell Physiol 25:855–858

    Google Scholar 

  • Ojima K, Koyama H, Suzuki R, Yamaya T (1989) Characterization of two tobacco cell lines selected to grow in the presence of either ionic Al or insoluble Al-phosphate. Soil Sci Plant Nutr 35:545–551

    Google Scholar 

  • Ono K, Yamamoto Y, Hachiya A, Matsumoto H (1995) Synergistic inhibition of growth by Al and iron of tobacco (Nicotiana tabacum L. cells in suspension culture. Plant Cell Physiol 36:115–125

    Google Scholar 

  • Osawa H, Matsumoto H (2001) Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol 126:411–420

    Article  Google Scholar 

  • Pearson R (1968a) Hard and soft acids and bases, HSAB, Part I, Fundamental principles. J Chem Educ 45:581–587

    Google Scholar 

  • Pearson R (1968b) Hard and soft acids and bases, HSAB, Part II, Underlying theories. J Chem Educ 45:643–648

    Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminumtolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat: Roles of root apical phosphate and malate exudation. Plant Physiol 112:591–597

    Google Scholar 

  • Peterson PJ (1969) The distribution of zinc-65 in Agrostis tenuis Sibth. and A. Stolonifera L. tissues. J Exp Bot 20:863–875

    Article  Google Scholar 

  • Reilly C (1967) Accumulation of copper by some Zambian plants. Nature 215:667–668

    Article  Google Scholar 

  • Rincon M, Gonzales RA (1992) Aluminum partitioning in intact roots of aluminumtolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol 99:1021–1028

    Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995a) Characterization of Al-stimulated efflux ofm malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995b) Malate efflux from root apices: evidence for a general mechanism of Al-tolerance in wheat. Aust J Plant Physiol 22:531–536

    Google Scholar 

  • Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  Google Scholar 

  • Schat H, Ten Bookum WM (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229

    Google Scholar 

  • Shaw BP (1995a) Changes in the levels of photosynthetic pigments in Phaseolus aureus Roxb. exposed to Hg and Cd at two stages of development: a comparative study. Bull Environ Contam Toxicol 55:574–580

    Article  Google Scholar 

  • Shaw BP (1995b) Effects of mercury and cadmium on the activities of antioxidativeenzymes in the seedlings of Phaseolus aureus Roxb. Biol Plant 37:587–596

    Google Scholar 

  • Shaw BP, Rout NP (1998) Age-dependent responses of Phaseolus aureus Roxb. to inorganic salts of mercury and cadmium. Acta Physiol Plant 20:85–90

    Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV (ed) Heavy Metal Stress in Plants-From Biomolecules to Ecosystems, Springer-Verlag, Heidelberg, pp 84–126

    Google Scholar 

  • Shuman LM, Wilson DO, Ramseur EL (1991) Amelioration of aluminum toxicity to sorghum seedlings by chelating agents. J Plant Nutr 14:119–128

    Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336

    Article  Google Scholar 

  • Strange J, Macnair MR (1991) Evidence for a role of cell membrane in copper tolerance of Mimulus guttatus Fischer ex DC. New Phytol 119:383–388

    Article  Google Scholar 

  • Tamas L, Simonovicova M, Hurrova J, Mistrik I (2004) Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot 51:281–288

    Article  Google Scholar 

  • Taylor GL (1991) Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93

    Google Scholar 

  • Trice KR, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol 100:309–318

    Google Scholar 

  • Wedepohl KH (2000) The composition of the upper earth’s atmosphere and the natural cycles of selected metals. Metals in natural raw materials. Natural resources. In: Merian E (ed) Metals and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, Chap. 1, John Wiley & Sons, Inc., New York

    Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38:1333–1339

    Google Scholar 

  • Zhang W-H, Ryan PR, Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125:1459–1472

    Article  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998a) High aluminum resistance in buckwheat. I.Alinduced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751

    Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998b) Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress. Physiol Plant 103:209–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shaw, B., Jha, V., Sahu, B. (2007). Metal Resistance in Plants with Particular Reference to Aluminium. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_6

Download citation

Publish with us

Policies and ethics