Skip to main content

Biogenic Impact on Materials

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

This is a preview of subscription content, log in via an institution.

Abbreviations

AFM:

atomic force microscopy

AFNOR:

Association Française de Normalisation

ARDRA:

amplified Ribosomal DNA Restriction Analysis

ASTM:

American Society for Testing and Materials

CEN:

European Standardisation Organisation

DIN:

Deutsches Institut für Normung

DOC:

dissolved organic carbon

EPS:

extracellular polymeric substances

FISH:

fluorescence in situ hybridization

GC:

gas chromatography

IBRG:

International Biodeterioration Research Group

ICR:

ion cyclotron resonance

ISO:

International Organization for Standardization

JIS:

Japanese Standardization Organization

MIC:

microbially induced corrosion

MITI:

Ministry of International Trade and Industry of Japan

MOE:

modulus of elasticity

OECD:

Organization for Economic Cooperation and Development

PCR:

polymerase chain reaction

PVC:

polyvinyl chloride

RAPD:

random amplified polymorphic DNA

RFLP:

restriction fragment length polymorphism

RH:

relative humidity

SCLM:

scanning confocal laser microscopy

SEM:

scanning electron microscope

UNI:

Ente Nationale Italiano di Unificazione

VOC:

volatile organic carbon

rRNA:

ribosomal RNA

References

  1. H. W. Rossmore (ed): Handbook of Biocide and Preservative Use (Blackie Academic, London 1995)

    Google Scholar 

  2. A. D. Russell, W. B. Hugo, G. A. J. Ayliffe (eds): Principles and Practice of Disinfection, Preservation and Sterilization (Blackwell Science, Oxford 1999) pp. 124–144

    Google Scholar 

  3. W. Paulus: Directory of Microbicides for the Protection of Materials: A Handbook (Kluwer Academic, Dordrecht 2005)

    Google Scholar 

  4. J. S. Webb, M. Nixon, I. M. Eastwood, M. Greenhalgh, G. D. Robson, P. S. Handley: Fungal colonization and biodeterioration of plasticised PVC, Appl. Environ. Microbiol. 66, 3194–3200 (2000)

    CAS  Google Scholar 

  5. D. J. Knight, M. Coole (eds): The Biocide Business: Regulation, Safety and Applications (Wiley-VCH, Weinheim 2002)

    Google Scholar 

  6. January 2006 Version of the Manual of Decisions For Implementation of Directive 98/8/EC Concerning the Placing on the Market of Biocidal Products

    Google Scholar 

  7. S. D. Worley, Y. Chen: Biocidal polystyrene hydantoin particles, US Patent 6548054 (2001)

    Google Scholar 

  8. D. Grosser: Pflanzliche und tierische Bau- und Werkholz-Schädlinge (DRW, Leinfelden 1985)

    Google Scholar 

  9. J. G. Wilkinson: Industrial Timber Preservation. In: The Rentokil Library, Chapt. 5. The deterioration of wood (Associated Business Press, London 1979) pp. 87–125

    Google Scholar 

  10. S. Anagnost: Light microscopic diagnosis of wood decay, IAWA 19(2), 141–167 (1998)

    Google Scholar 

  11. J. E. Winandy, J. J. Morrell: Relationship between incipient decay, strength and chemical composition of Douglas Fir heartwood, Wood Fibre Sci. 25(3), 278–288 (1993)

    CAS  Google Scholar 

  12. J. Bodig: The process of NDE research for wood and wood composites, e-J. Nondestruct. Test. 6(3) (2001) www.ndt.net, March 2001

  13. R. Ross, R. F. Pellerin: Nondestructive testing for assessing wood members in structures: a review. Ge. Tech. Rep. FPL-GTR-70 (rev.) (U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI 1994) p. 40

    Google Scholar 

  14. M. Grinda: A field study on the suitability of the European lap-joint test. The Int. Res. Group Wood Preserv., Document IRG/WP 01-20239 (IRG, Stockholm 2001)

    Google Scholar 

  15. T. Nilsson, M. L. Edlund: Laboratory versus field tests for evaluating wood preservatives: A scientific view, IRGWP 00-20205 (IRG, Stockholm 2000)

    Google Scholar 

  16. CEN/TR 14723: Durability of Wood and Wood-based Products – Field and Accelerated Conditioning Tests (FACT) for Wood Preservative out of Ground Contact (CEN, European Committee for Standardization, Brussels 2003)

    Google Scholar 

  17. L. Machek, H. Militz, R. Sierra-Alvarez: The use of an acoustic technique to detect wood decay in laboratory soil-bed tests, Wood Sci. Technol. 34, 467–472 (2001)

    CAS  Google Scholar 

  18. S. C. Jones, H. N. Howell (eds): Wood-destroying insects, Handbook of Household and Structural Pests (Entomological Soc. America, Lanham 2000) pp. 99–127

    Google Scholar 

  19. R. A. Haack, T. M. Poland, T. R. Petrice, C. Smith, D. Treece, G. Allgood: Acoustic detection of Anoplophora glabripennis and native woodborers (Coleoptera: Cerambycidae). Gen. Tech. Rep. NE 285 (Proc. U.S. Department Agriculture Interagency Research Forum Gypsy Moth and Other Invasive Species, 2001) pp. 74–75

    Google Scholar 

  20. S. E. Brooks, F. M. Oi, P. G. Koehler: Ability of canine termite detectors to locate live termites and discriminate them from non-termite material, J. Economic Entomol. 96, 1259–1266 (2003)

    Google Scholar 

  21. J-D. Gu: Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances, Int. Biodeter. Biodegr. 52, 69–91 (2003)

    CAS  Google Scholar 

  22. W. H. Stahl, H. Pessen: Funginertness of interally plasticized polymers, Mod. Plast. 54, 111–112 (1954)

    Google Scholar 

  23. S. Berk, H. Ebert, L. Teitell: Utilization of plasticizers and related organic components by fungi, L. Ind. Eng. Chem. Res. 49(7), 1115–1123 (1957)

    CAS  Google Scholar 

  24. M. Pantke: Test methods for evaluation of susceptibility of plasticised PVC and its components to microbial attacking. In: Biodeterioration Investigation Techniques, ed. by H. Waters (Applied Science Publ., London 1977) pp. 51–76

    Google Scholar 

  25. V. T. Breslin: Degradation of starch-plastic composites in a municipal solid waste landfill, J. Environ. Polym. Degr. 1(2), 127–141 (1993)

    CAS  Google Scholar 

  26. N. S. Allen, M. Edge, T. S. Jewitt, C. V. Horie: Initiation of the degradation of cellulose triacetate base motion picture film, J. Photogr. Sci. 38(2), 54–59 (1990)

    CAS  Google Scholar 

  27. W. G. Glasser, B. K. McCartney, G. Samaranayake: Cellulose Derivatives with low degree of substitution: 3. The biodegradability of cellulose esters using a simple enzyme assay, Biotechnol. Prog. 10, 214–219 (1994)

    CAS  Google Scholar 

  28. Y. Tokiwa, T. Suzuki: Hydrolysis of polyesters by lipase, Nature 270, 76–78 (1977)

    CAS  Google Scholar 

  29. E. Marten, R.-J. Müller, W.-D. Deckwer: Studies on the enzymatic hydrolysis of polyesters: I. Low molecular mass model esters and aliphatic Polym. polyesters, Degr. Stab. 80(3), 485–501 (2003)

    CAS  Google Scholar 

  30. E. Marten, R.-J. Müller, W.-D. Deckwer: Studies on the enzymatic hydrolysis of polyesters: II. Aliphatic-aromatic copolyesters, Polym. Degr. Stabil. 88(3), 371–381 (2005)

    CAS  Google Scholar 

  31. A. Linos, M. M. Berekaa, R. Reichelt, U. Keller, J. Schmitt, H.-C. Flemming, R. M. Kroppenstedt, A. Steinbüchel: Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis, Appl. Environ. Microbiol. 66(4), 1639–1645 (2000)

    CAS  Google Scholar 

  32. U. Pagga: Testing biodegradability with standardized methods, Chemosphere 35(12), 2953–2972 (1997)

    CAS  Google Scholar 

  33. K. J. Seal, H. O. W. Eggins: The biodeterioration of materials. In: Essays in applied microbiology, ed. by J. R. Norris, M. H. Richmond (Wiley, New York 1981)

    Google Scholar 

  34. M. Pantke: Test methods for evaluation of susceptibility of plasticised PVC and its components to microbial attack. In: Biodeterioration Investigation Techniques, ed. by H. Waters (Applied Science Publ., London 1977) pp. 51–76

    Google Scholar 

  35. M. Itävaara, M. Vikman: An overview of methods for biodegradability testing of biopolymers and packaging materials, J. Environ. Polym. Degr. 4(1), 29–36 (1996)

    Google Scholar 

  36. M. Pantke, K. J. Seal: An interlaboratory investigation into the biodeterioration testing of plastics, with special reference to polyurethanes; Part 2: Soil burial experiments, Mater. Organismen 25(2), 88–98 (1990)

    Google Scholar 

  37. U. Pagga, D. B. Beimborn, J. Boelens, B. DeWilde: Determination of the biodegradability of polymeric material in a laboratory controlled composting test, Chemosphere 31(11/12), 4475–4487 (1995)

    CAS  Google Scholar 

  38. M. Tosin, F. Degli Innocenti, C. Bastioli: Effect of the composting substrate on biodegradation of solid materials under controlled composting, J. Conditions Environ. Polym. Degr. 4(1), 55–63 (1996)

    CAS  Google Scholar 

  39. A. Ohtaki, N. Sato, K. Nakasaki: Biodegradation of poly(ε-caprolactone) under controlled composting conditions, Polym. Degr. Stabil. 61(3), 499–505 (1998)

    CAS  Google Scholar 

  40. J. Tuominen, J. Kylmä, A. Kapanen, O. Venelampi, M. Itävaara, J. Seppälä: Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact, Biomacromol. 3(3), 445–455 (2002)

    CAS  Google Scholar 

  41. F. Degli-Innocenti, M. Tosin, C. Bastioli: Evaluation of the biodegradation of starch and cellulose under controlled composting conditions, J. Environ. Polym. Degr. 6(4), 197–202 (1998)

    CAS  Google Scholar 

  42. S. M. McCartin, B. Press, D. Eberiel, S. P. McCarthy: Simulated landfill study on the accelerated biodegradability of plastics materials, Amer. Chem. Soc. Polym. Prepr. 31(1), 439–440 (1990)

    CAS  Google Scholar 

  43. G. P. Smith, B. Press, D. Eberiel, S. P. McCarthy, R. A. Gross, D. L. Kaplan: An accelerated in laboratory test to evaluate the degradation of plastics in landfill environments, Polym. Mater. Sci. Eng. 63, 862–866 (1990)

    CAS  Google Scholar 

  44. S. P. McCarthy, M. Gada, G. P. Smith, V. Tolland, B. Press, D. Eberiel, C. Bruell, R. A. Gross: The accelerated biodegradability of plastic materials in simulated compost and landfill environments, Annu. Tech. Conf. – Soc. Plast. Eng. 50(1), 816–818 (1992)

    Google Scholar 

  45. P. Püchner, W. R. Müller, D. Bartke: Assessing the biodegradation potential of polymers in screening- and long-term test systems, J. Environ. Polym. Degr. 3(3), 133–143 (1995)

    Google Scholar 

  46. T. Walter, J. Augusta, R.-J. Müller, H. Widdecke, J. Klein: Enzymatic degradation of a model polyester by lipase, Enzyme Microbiol. Technol. 17, 218–224 (1995)

    CAS  Google Scholar 

  47. M. Vikman, M. Itävaara, K. Poutanen: Measurement of the biodegradation of starch based materials by enzymatic methods and composting, J. Environ. Polym. Degr. 3(1), 23–29 (1995)

    CAS  Google Scholar 

  48. Z. Gan, J. F. Fung, X. Jing, C. Wu, W. M. Kulicke: A novel laser light scattering study of enzymatic biodegradation of poly(caprolactone) nanoparticles, Polymer 40(8), 1961–1967 (1999)

    CAS  Google Scholar 

  49. K. Welzel, R.-J. Müller, W.-D. Deckwer: Enzymatischer Abbau von Polyester-Nanopartikeln, Chem. Ing. Tech. 74(10), 1496–1500 (2002)

    CAS  Google Scholar 

  50. E. Ikada: Electron microscope observation of biodegradation of polymers, J. Environ. Polym. Degr. 7(4), 197–201 (1999)

    CAS  Google Scholar 

  51. D. Abou-Zeid: Anaerobic biodegradation of natural and synthetic polyesters Ph.D. Thesis (Technical University Braunschweig, Germany 2001)

    Google Scholar 

  52. Y. Kikkawa, H. Abe, T. Iwata, Y. Inoue, Y. Doi: Crystal morphologies and enzymatic degradation of melt crystallized thin films of random copolyesters of (R) 3-hydroxybutyric acid with (R) 3-hydroxyalkanoic acids, Polym. Degr. Stabil. 76(3), 467–478 (2002)

    CAS  Google Scholar 

  53. B. Erlandsson, S. Karlsson, A.-C. Albertsson: The mode of action of corn starch and a prooxidant system in LDPE: influence of thermooxidation and UV irradation on the molecular weight changes, Polym. Degr. Stabil. 55, 237–245 (1997)

    CAS  Google Scholar 

  54. V. T. Breslin: Degradation of starch plastic composites in a municipal solid waste landfill, J. Environ. Polym. Degr. 1(2), 127–141 (1993)

    CAS  Google Scholar 

  55. H. Tsuji, K. Suzuyoshi: Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R) 3 hydroxybutyrate], and poly(L lactide) films in controlled static seawater, Polym. Degr. Stabil. 75(2), 347–355 (2002)

    CAS  Google Scholar 

  56. U. Witt, T. Einig, M. Yamamoto, I. Kleeberg, W.-D. Deckwer, R.-J. Müller: Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates, Chemosphere 44(2), 289–299 (2001)

    CAS  Google Scholar 

  57. J. Hoffmann, I. Reznicekova, S. Vanökovä, J. Kupec: Manometric determination of biological degradability of substances poorly soluble in aqueous environments, Int. Biodeter. Biodegr. 39(4), 327–332 (1997)

    CAS  Google Scholar 

  58. U. Pagga, A. Schäfer, R.-J. Müller, M. Pantke: Determination of the aerobic biodegradability of polymeric material in aquatic batch tests, Chemosphere 42(3), 319–331 (2001)

    CAS  Google Scholar 

  59. A. Calmon, L. Dusserre Bresson, V. Bellon Maurel, P. Feuilloley, F. Silvestre: An automated test for measuring polymer biodegradation, Chemosphere 41(5), 645–651 (2000)

    CAS  Google Scholar 

  60. W. R. Müller: Sauerstoff und Kohlendioxid gleichzeitig messen, LaborPraxis Sept. 1999, 94–98 (1999)

    Google Scholar 

  61. R. Solaro, A. Corti, E. Chiellini: A new respirometric test simulating soil burial conditions for the evaluation of polymer biodegradation, J. Environ. Polym. Degrad 5(4), 203–208 (1998)

    Google Scholar 

  62. M. Itävaara, M. Vikman: A simple screening test for studying the biodegradability of insoluble polymers, Chemosphere 31(11/12), 4359–4373 (1995)

    Google Scholar 

  63. K. Richterich, H. Berger, J. Steber: The ‘two phase closed bottle test’ a suitable method for the determination of ‘ready biodegradability’ of poorly soluble compounds, Chemosphere 37(2), 319–326 (1998)

    CAS  Google Scholar 

  64. G. Bellina, M. Tosin, G. Floridi, F. Degli Innocenti: Activated vermiculite, a solid bed for testing biodegradability under composting conditions, Polym. Degr. Stabil. 66(1), 65–79 (1999)

    Google Scholar 

  65. G. Bellina, M. Tosin, F. Degli Innocenti: The test method of composting in vermiculite is unaffected by the priming effect, Polym. Degr. Stabil. 69, 113–120 (2000)

    Google Scholar 

  66. A. M. Buswell, H. F. Müller: Mechanism of methane fermentation, Ind. Eng. Chem. 44(3), 550–552 (1952)

    CAS  Google Scholar 

  67. D.-M. Abou-Zeid, R.-J. Müller, W.-D. Deckwer: Degradation of natural and synthetic polyesters under anaerobic conditions, J. Biotechnol. 86(2), 113–126 (2001)

    CAS  Google Scholar 

  68. D.-M. Abou-Zeid, R.-J. Müller, W.-D. Deckwer: Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms, Biomacromol. 5(5), 1687–1697 (2004)

    CAS  Google Scholar 

  69. S. Gartiser, M. Wallrabenstein, G. Stiene: Assessment of several test methods for the determination of the anaerobic biodegradability of polymers, J. Environ. Polym. Degr. 6(3), 159–173 (1998)

    CAS  Google Scholar 

  70. A. Reischwitz, E. Stoppok, K. Buchholz: Anaerobic degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Biodegr. 8, 313–319 (1998)

    CAS  Google Scholar 

  71. K. Budwill, P. M. Fedorak, W. J. Page: Anaerobic microbial degradation of poly(3-hydroxyalkanoates) with various terminal electron acceptors, J. Environ. Polym. Degr. 4(2), 91–102 (1996)

    CAS  Google Scholar 

  72. A.-C. Albertsson: Biodegradation of synthetic polymers II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi, J. Appl. Polym. Sci. 22, 3419–3433 (1978)

    CAS  Google Scholar 

  73. M. Tuomela, A. Hatakka, S. Raiskila, M. Vikman, M. Itävaara: Biodegradation of radiolabelled synthetic lignin (14C DHP) and mechanical pulp in a compost environment, Appl. Microbiol. Biotechnol. 55(4), 492–499 (2001)

    CAS  Google Scholar 

  74. H. Nishida, Y. Tokiwa: Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments, J. Environ. Polym. Degr. 1(3), 227–233 (1993)

    CAS  Google Scholar 

  75. J. Augusta, R.-J. Müller, H. Widdecke: A rapid evaluation plate test for the biodegradability of plastics, Appl. Microbiol. Biotechnol. 39, 673–678 (1993)

    CAS  Google Scholar 

  76. Y. Tokiwa, T. Ando, T. Suzuki, T. Takeda: Biodegradation of synthetic polymers containing ester bonds, Polym. Mater. Sci. Eng. 62, 988–992 (1990)

    CAS  Google Scholar 

  77. K. E. Jäger, A. Steinbüchel, D. Jendrossek: Substrate specificities of bacterial polyhydroxyalkanoate depolymerase and lipases: Bacterial lipases hydrolyze poly(T-hydroxyalkanoates), Appl. Environ. Microbiol. 61(8), 3113–3118 (1995)

    Google Scholar 

  78. A. Calmon Decriaud, V. Bellon Maurel, F. Silvestre: Standard methods for testing the aerobic biodegradation of polymeric materials. Review and perspectives, Adv. Polym. Sci. 135, 207–226 (1998)

    CAS  Google Scholar 

  79. H. Sawada: ISO standard activities in standardization of biodegradability of plastics development of test methods and definitions, Polym. Degr. Stabil. 59(1-3), 365–370 (1998)

    CAS  Google Scholar 

  80. M. Avella, E. Bonadies, E. Martuscelli, R. Rimedio: European current standardization for plastic packaging recoverable through composting and biodegradation, Polym. Test. 20(5), 517–521 (2001)

    Google Scholar 

  81. F. Degli Innocenti, C. Bastioli: Definition of compostability criteria for packaging: Initiatives in Italy, J. Environ. Polym. Degr. 5(4), 183–189 (1997)

    CAS  Google Scholar 

  82. J. D. Gu, S. Coulter, D. Eberiel, S. P. McCarthy, R. A. Gross: A respirometric method to measure mineralization of polymeric materials in a matured compost environment, J. Environ. Polym. Degr. 1(4), 293–299 (1993)

    CAS  Google Scholar 

  83. A. Starnecker, M. Menner: Assessment of biodegradability of plastics under simulated composting conditions in a laboratory test system, Int. Biodeter. Biodegr. 37, 85–92 (1996)

    Google Scholar 

  84. M. Van der Zee, J. H. Stoutjesdijk, H. Feil, J. Feijen: Relevance of aquatic biodegradation tests for predicting degradation of polymeric materials during biological solid waste treatment, Chemosphere 36(3), 461–473 (1998)

    Google Scholar 

  85. U. Pagga: Compostable packaging materials test methods and limit values for biodegradation, Appl. Microbiol. Biotechnol. 51(2), 125–133 (1999)

    CAS  Google Scholar 

  86. M. Itävaara, M. Vikman, O. Venelampi: Windrow composting of biodegradable packaging materials, Compost Sci. Util. 5(2), 84–92 (1997)

    Google Scholar 

  87. M. H. Dang, F. Birchler, E. Wintermantel: Toxocity screening of biodegradable polymers II. Evaluation of cell culture test with medium extract, J. Environ. Polym. Degr. 5(1), 49–56 (1997)

    CAS  Google Scholar 

  88. F. Degli Innocenti, G. Bellia, M. Tosina, A. Kapanen, M. Itävaara: Detection of toxicity released by biodegradable plastics after composting in activated vermiculite, Polym. Degr. Stabil. 73(1), 101–106 (2001)

    CAS  Google Scholar 

  89. M. Day, K. Shaw, D. Cooney: Biodegradability: an assessment of commercial polymers according to the Canadian method for anaerobic conditions, J. Environ. Polym. Degr. 2, 121–127 (1994)

    CAS  Google Scholar 

  90. N. E. Sharabi, R. von Bartha: Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution, Appl. Environ. Microbiol. 59(4), 1201–1205 (1993)

    Google Scholar 

  91. Y. Yakabe, N. Kazuo, T. Hara, Y. Fujin: Factors affecting the biodegradability of biodegradable polyesters in soil, Chemosphere 25(12), 1879–1888 (1992)

    CAS  Google Scholar 

  92. A. Calmon, S. Guillaume, V. Bellon Maurel, P. Feuilloley, F. Silvestre: Evaluation of material biodegradability in real conditions Development of a burial test and an analysis methodology based on numerical vision, J. Environ. Polym. Degr. 7(3), 157–166 (1999)

    CAS  Google Scholar 

  93. K. L. G. Ho, L. Pometto: Temperature effects on soil mineralization of polylactic acid plastic in laboratory respirometers, J. Environ. Polym. Degr. 7(2), 101–108 (1999)

    CAS  Google Scholar 

  94. H. Nishide, K. Toyota, M. Kimura: Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms, Soil Sci. Nutr. 45(4), 963–972 (1999)

    Google Scholar 

  95. S. Grima, V. Bellon Maurel, P. Feuilloley, F. Silvestre: Aerobic biodegradation of polymers in solid state conditions: A review of environmental and physicochemical parameter settings in laboratory, J. Environ. Polym. Degr. 8(4), 183–195 (2000)

    CAS  Google Scholar 

  96. E. Abrams: Microbiological Deterioration of Organic Material: Its prevention and Methods of Test. Wash. Nat. Bur. Stand. Misc. Publ. 188 (NBS, Washington 1948)

    Google Scholar 

  97. J. La Brijn, H. R. Kauffman: Fungal Testing of Textiles: A Summary of the Cooperative Experiments Carried Out by the Working Group on Textiles of the International Biodeterioration Research Group (IBRG). In: Biodeterioration of Materials, Vol. 2, ed. by A. H. Walters, E. H. Heuck Van de Plas (Applied Science Pub., London 1972)

    Google Scholar 

  98. J. S. Webb, M. Nixon, I. M. Eastwood, M. Greenhalgh, G. D. Robson, P. S. Handley: Fungal colonization and biodeterioration of plasticised PVC, Appl. Environ. Microbiol. 66, 3194–3200 (2000)

    CAS  Google Scholar 

  99. M. Stranger-Johannessen: The role of microorganisms in the formation of pitch deposits in pulp and paper mills, Biotechnol. Adv. 2(2), 319–327 (1984)

    CAS  Google Scholar 

  100. H. R. Arai: Microbiological studies on the conservation of paper and related cultural properties (Part 1): Isolation of fungi from the foxing on paper, Sci. Conserv. 23, 33–39 (1984)

    Google Scholar 

  101. W. K. Wilson: Environmental Guidelines for the Storage of Paper Records, NISO-TR01-1995, ISSN 1081-8006 (1995)

    Google Scholar 

  102. W. Paulus: Directory of Microbicides for the Protection of Materials: A Handbook (Kluwer, Dordrecht 2005)

    Google Scholar 

  103. European Community: Doc-Biocides-2002/04-Rev3 Guidance document agreed between the Commission services and the competent authorities of the Member States for the Biocidal Products Directive 98/8/EC – Guidance Notes on Treated Articles (2004)

    Google Scholar 

  104. W. Hewitt, S. Vincent: Theory and Practice of Microbiological Assay (Academic, New York 1989)

    Google Scholar 

  105. Dr. P. Raschle: Personal Communication

    Google Scholar 

  106. Svensk Standard SS 876 00 19 Sjukvårdstextil – Bakteriepenetration – Våt (Bacterial Penetration Test) (1994)

    Google Scholar 

  107. EDANA Test Method 190.1-02 Dry Bacterial Penetration (2002)

    Google Scholar 

  108. EDANA Test Method 200.1-02 Wet Bacterial Penetration (2002)

    Google Scholar 

  109. W. E. Krumbein, B. D. Dyer: This planet is alive. Weathering and biology, a multi-facetted problem. In: The Chemistry of Weathering, ed. by J. M. Drever (Reidel, Dordrecht 1985) pp. 143–160

    Google Scholar 

  110. C. Gehrmann, W. E. Krumbein, K. Petersen: Lichen weathering activities on mineral and rock surfaces, Studia Geobot. 8, 33–45 (1988)

    Google Scholar 

  111. C. Gehrmann, K. Petersen, W. E. Krumbein: Silicole and calcicole lichens on jewish tombstones – interaction with the environment and biocorrosion, VI. Int. Congress on deterioration and conservation of stone 1988 (Nicholas Kopernikus Univ., Torun 1988) pp. 33–38

    Google Scholar 

  112. A. Villa: Desherbement des surfaces recouvertes de mosaiques a ciel ouvert. In: Atti I Congresso sulla Conservazione dei Mosaici (ICROM, Roma 1977) pp. 45–49

    Google Scholar 

  113. H. L. Ehrlich: Geomicrobiology (Marcel Dekker Inc., New York 1990)

    Google Scholar 

  114. F. E. W. Eckhardt: Solubilization, transport and deposition of mineral cations bymicroorganisms. Efficient rock weathering agents. In: Chemistry of weathering, ed. by J. I. Drever (Reidel, New York 1985) pp. 161–173

    Google Scholar 

  115. W. E. Krumbein, K. Jens: Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi, Oecologia 50, 25–38 (1981)

    Google Scholar 

  116. C. Jaton, G. Orial: Processus microbiologiques des alterations des briques. In: Atti Convegno “Il mattone di” (Fondazione Cini, Venezia 1979) p. 163

    Google Scholar 

  117. A. Koestler, E. Charola, M. Wypyski: Microbiologically induced deterioration of dolomitic and calcitic stone as viewed by scanning electron microscopy, Proc. Vth Int. Congr. Deterioration Conservation of Stone (Presses Polytechniques Romandes, Lausanne 1985) pp. 617–626

    Google Scholar 

  118. W. E. Krumbein: Role des microrganismes dans la genese, la diagenese et la degradation des roches en place, Rev. Ecol. Biol. Sol 9, 283–319 (1972)

    CAS  Google Scholar 

  119. W. E. Krumbein, J. Pochon: Ecologie bacterienne des pierres alterres des monuments, Ann. Inst. Pasteur 107, 724–732 (1964)

    CAS  Google Scholar 

  120. M. Thiebaud, J. Lajudie: Associations bacteriennes et alterations biologiques des monuments en pierre calcaire, Ann. Inst. Pasteur 105, 353–358 (1963)

    CAS  Google Scholar 

  121. H. Kaltwasser: Destruction of concrete by nitrification, J. Appl. Microbiol. 3, 185–192 (1976)

    CAS  Google Scholar 

  122. J. Kauffmann: Roles des bacteries nitrificantes dans l'alteration des pierres calcaires des monuments, Compt. Rend. Acad. Sci. 34, 2995 (1952)

    Google Scholar 

  123. J. Kauffmann: Corrosion et protection des pierres calcaires des monuments, Corrosion Anticorrosion 8, 87–95 (1960)

    CAS  Google Scholar 

  124. E. Bock, W. Sand, M. Meincke, B. Wolters, B. Ahlers, C. Meyer, F. Sameluck: Biologically induced corrosion of natural stones. Strong contamination of monuments with nitrifying organisms. In: Biodeterioration, ed. by D. R. Hughton, R. N. Smith, H. O. W. Eggings (Elsevier Applied Sci., London 1987) pp. 436–440

    Google Scholar 

  125. W. E. Krumbein: Patina and cultural heritage – a geomicrobiologist's perspective. In: Cultural heritage research: a Pan European Challenge. European Communities, ed. by R. Kozlowski (Academy of Science, Krakow 2003) p. 415

    Google Scholar 

  126. S. G. Paine, F. V. Lingood, F. Schimmer, T. C. Thrupp: The relationship of micro-organisms to the decay of stone, Phil. Trans. Royal Soc. London Ser. B 222, 97–127 (1933)

    Google Scholar 

  127. W. E. Krumbein: Zur Frage der Gesteinsverwitterung. Über geochemische und mikrobiologische Bereiche der exogenen Dynamik Ph.D. Thesis (Univ. Würzburg 1966) p. 149

    Google Scholar 

  128. F. E. W. Eckhardt: Microbial degradation of silicates – Release of cations from aluminosilicate minerals by yeasts and filamentous fungi. In: Biodeterioration, ed. by T. A. Oxley, G. Becker, D. Allsopp (Pitman, The Biodeterioration Society, London 1978) pp. 107–116

    Google Scholar 

  129. W. E. Krumbein: Zur Frage der biologischen Verwitterung: Einfluß der Mikroflora auf die Bausteinverwitterung und ihre Abhängigkeit von edaphischen Faktoren, Z. Allg. Mikrobiol. 8, 107–117 (1968)

    CAS  Google Scholar 

  130. W. E. Krumbein: Über den Einfluß von Mikroorganismen auf die Bausteinverwitterung – eine ökologische Studie, Deut. Kunst Denkmalpflege 31, 54–71 (1973)

    Google Scholar 

  131. D. M. Webley, M. E. K. Henderson, I. F. Taylor: The microbiology of rocks and weathered stones, J. Soil Sci. 14, 102–112 (1963)

    Google Scholar 

  132. W. E. Krumbein: private communication

    Google Scholar 

  133. Th. Warscheid: Untersuchungen zur Biodeterioration von Sandsteinen unter besonderer Berücksichtigung der chemoorganotrophen Bakterien Ph.D. Thesis (Univ. Oldenburg 1990) p. 147

    Google Scholar 

  134. A. Vuorinen, S. Mantere-Almonen, R. Uusinoka, P. Alhonen: Bacterial weathering of Rapabiu granite, Geomicrobiol. J. 2, 317–325 (1981)

    Google Scholar 

  135. F. Lewis, E. May, B. Daley, A. F. Bravery: The role of heterotrophic bacteria in the decay of sandstone from ancient monuments. In: Biodeterioration of Constructional Materials. Proc. Summer Meeting of the Biodeterioration Soc. (Biodeterioration Society, Delft 1987) pp. 45–53

    Google Scholar 

  136. A. A. Gorbushina, W. E. Krumbein, M. Volkmann: Rock surfaces as life indicators: New ways to demonstrate lifes and traces of former life (Astrobiology Vol.2, 203-213, 2002)

    Google Scholar 

  137. S. T. Williams: Streptomycetes in biodeterioration. Their relevance, detection and identification, Int. Biodet. 21, 201–209 (1985)

    Google Scholar 

  138. B. Chamier: Über den Einfluß von Actinomyceten auf die Materialzerstörung. M. Sc. Thesis (Univ. Oldenburg, 1991) p. 113

    Google Scholar 

  139. J. M. B. Coppock, E. D. Cookson: The effect of humidity on mould growth constructional materials, J. Sci. Food Agri. 2, 534–537 (1952)

    Google Scholar 

  140. M. E. K. Henderson, R. B. Duff: The release of metallic and silicate ions from minerals, rocks and solis by fungal activity, J. Soil Sci. 14, 236–246 (1963)

    CAS  Google Scholar 

  141. H.-C. Flemming: Biofilme und ihre Bedeutung für die mikrobielle Materialzerstörung. In: Mikrobielle Materialzerstörung, ed. by H. Brill (Georg Fischer, Stuttgart 1995) pp. 24–47

    Google Scholar 

  142. H.-C. Flemming: Auswirkungen mikrobieller Materialzerstörung. In: Mikrobielle Materialzerstörung, ed. by H. Brill (Georg Fischer, Stuttgart 1995) pp. 15–23

    Google Scholar 

  143. H.-C. Flemming: Mikrobielle Korrosion von Beton. In: Zementgebundene Beschichtungen in Trinkwasserbehältern, ed. by H. Wittmann, A. Gerdes (Aedificatio, Freiburg 1996) pp. 53–65

    Google Scholar 

  144. W. E. Krumbein: Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung), Geol. Rdsch. 58, 333–363 (1969)

    CAS  Google Scholar 

  145. G. Grote: Mikrobieller Mangan- und Eisentransfer an Rock Varnish und Petroglyphen arider Gebiete Ph.D. Thesis (Univ. Oldenburg, 1991) p. 335

    Google Scholar 

  146. W. E. Krumbein: Mikrobiologische Prozesse und Baumaterialveränderung. In: 2. Int. Kolloquium: Werkstoffwissenschaften und Bausanierung, ed. by F. H. Wittmann (Technische Akademie, Esslingen 1986) pp. 45–62

    Google Scholar 

  147. A. Gorbushina, W. E. Krumbein, L. Panina, S. Soukharjevsk, U. Wollenzien: On the role of black fungi in color change and biodeterioration of antique marbles, Geomicrobiol. J. 11, 205–221 (1993)

    Google Scholar 

  148. W. E. Krumbein, J. Pochon, M. A. Chalvignac: Recherches biologiques sur le Mondmilch, C. R. Acad. Sci. (Paris) 258, 5113–5114 (1964)

    Google Scholar 

  149. D. Jones, M. J. Wilson: Chemical activities of lichens on mineral surfaces – A review, Int. Biodet. Bull. 21, 99–104 (1985)

    CAS  Google Scholar 

  150. A. Danin, R. Gerson, J. Garty: Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to Terra Rossa Soil, Soil Sci. 136, 213–217 (1983)

    Google Scholar 

  151. D. Allsopp, K. S. Seal: Introduction to Biodeterioration (Edward Arnold, London 1986)

    Google Scholar 

  152. T. E. Ford, J. S. Maki, R. Mitchell: Involvement of bacterial exopolymers in biodeterioration of metals. In: Biodeterioration, Vol. 7, ed. by D. R. Hughton, R. N. Smith, H. O. W. Eggings (Elsevier Applied Sci., London 1987) pp. 378–384

    Google Scholar 

  153. J. W. Costerton, G. G. Geesey, P. A. Jones: Bacterial biofilms in relation to internal corrosion monitoring and biocide strategies, Mat. Perform. 12, 49–53 (1988)

    Google Scholar 

  154. W. Kerner-Gang: Zur Frage der Entstehung von Schimmelpilzspuren auf optischen Gläsern, Material and Organismen 3, 1–17 (1968)

    Google Scholar 

  155. W. Kerner-Gang: Evaluation techniques for resistance of optical lenses to fungal attack. In: Biodeterioration Investigation Techniques, ed. by A. H. Walters (Appl. Sci. Publ., London 1977) pp. 105–114

    Google Scholar 

  156. R. Newton, S. Davison: Conservation of glass (Butterworth, London 1989)

    Google Scholar 

  157. E. Mellor: Les lichen vitricole et la deterioration des vitraux d'eglise. These (Paris 1922)

    Google Scholar 

  158. E. Mellor: Lichens and their action on the glass and leadings of church windows, Nature (London) 112, 299–300 (1923)

    Google Scholar 

  159. N. H. Tennent: Fungal growth on medieval glass, J. Br. Soc. Master Glass Painters 17, 64–68 (1981)

    Google Scholar 

  160. G. Callot, M. Maurette, L. Pottier, A. Dubois: Biogenic etching of microfractures in amorphous and crystalline silicates, Nature (London) 328, 147–149 (1987)

    CAS  Google Scholar 

  161. R. J. Koestler, D. R. Houghton, B. Flannigan, H. W. Rossmore: International Biodeterioration Special Issue: Biodeterioration of Cultural Property (Elsevier, Barking 1991) p. 340 ; including a bibliography by R. J. Koestler and J. Vedral

    Google Scholar 

  162. C. Saiz-Jimenez (ed): Molecular Biology and Cultural Heritage (Swets & Zeitlinger, Lisse 2003) p. 278

    Google Scholar 

  163. N. Valentin, M. Lidstrom, F. Preusser: Microbial control by low oxygen and low relative humidity environment, Studies Conserv. 35, 222–230 (1990)

    Google Scholar 

  164. J. Pochon, P. Tardieux: Techniques d'analyse de microbiologie du Sol (Ed. La Tourelle, St. Mandé 1962) p. 104

    Google Scholar 

  165. J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein: Growth control of algae and Cyanobacteria on historical monuments by a mobile UV unit (MUVU), Studies Conserv. 25, 71–77 (1980)

    Google Scholar 

  166. G. Caneva, O. Salvadori: Biodeterioration of stone. In: Studies and Documents on the Cultural Heritage. The Deterioration and Conservation of Stone (UNESCO, Venezia 1987) pp. 182-233

    Google Scholar 

  167. A. Downey: The use of biocides in paint preservation. In: Handbook of Biocide and Preservative Use (Blackie Academic, London 1995)

    Google Scholar 

  168. W. Paulus: Directory of Microbicides for the Protection of Materials. A Handbook (Kluwer Academic, Dordrecht 2005)

    Google Scholar 

  169. B. Flanningan, E. M. McCabe et al.: Allergenic and toxigenic micro-organisms in houses. In: Pathogens in the Environment, ed. by B. Austin (Blackwell, Oxford 1991)

    Google Scholar 

  170. G. T. Hill, N. A. Mitkowski, L. Aldrich-Wolfe, L. R. Emele, D. D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S. T. Lynch, E. B. Nelson: Methods for assessing the composition and deversity of soil microbial communities, Appl. Soil Ecol. 15, 25–36 (2000)

    Google Scholar 

  171. M. Viaud, A. Pasquier, Y. Brygoo: Diversity of soil fungi studied by PCR-RFLP of ITS, Mycol. Res. 104, 1027–1032 (2000)

    CAS  Google Scholar 

  172. J. W. Lengeler, G. Drews, H. G. Schlegel (eds): Biology of the Prokaryotes (Thieme, Stuttgart 1999) pp. 695–700

    Google Scholar 

  173. O. Schmidt, U. Moreth: Identification of the dry rot fungus, Serpula lacrymans, and the wild Merulius, S. himantioides, by amplified ribosomal DNA restriction analysis (ARDRA), Holzforsch. 53, 123–128 (1999)

    CAS  Google Scholar 

  174. J. Jellison, C. Jasalavich: A review of selected methods for the detection of degradative fungi, Int. Biodeter. Biodegr. 46, 241–244 (2000)

    Google Scholar 

  175. K. Winkowski: Efficacy of in can preservatives, Eur. Coating J. 1-2, 87–90 (2001)

    Google Scholar 

  176. B. Schmidt et al.: Documents of the Project Sub-Group on Preservation of Tinter Pastes (International Biodeterioration Research Group, 2005)

    Google Scholar 

  177. P. D. Askew: Antibacterial Coatings: Fact or Fiction?, Proc. of Coatings, Compliance, Community and Care, PRA International Symposium 18, Brussels, Belgium Nov. 2001

    Google Scholar 

  178. P. D. Askew: Antimicrobial coatings: A review, Coatings Rev. (2003)

    Google Scholar 

  179. P. D. Askew: Hygienic coatings – Defining the terms and supporting the claims, Proc. of the Third Global Conference on Hygienic Coatings and Surfaces, Paris, France March 2005

    Google Scholar 

  180. Europena Community: Doc-Biocides-2002/04-Rev3 Guidance document agreed between the Commission services and the competent authorities of the Member States for the Biocidal Products Directive 98/8/EC – Guidance Notes on Treated Articles (2004)

    Google Scholar 

  181. W. Hewitt, S. Vincent: Theory and Practice of Microbiological Assay (Academic, New York 1989)

    Google Scholar 

  182. JIS: Antimicrobial products – Test for antimicrobial activity and efficacy, Jpn. Ind. Standard JIS Z 2801: 2000 (E) (2000)

    Google Scholar 

  183. S. McEldowney, M. Fletcher: The effect of temperature and relative humidity on the survival of bacteria attached to dry solid surfaces, Lett. Appl. Microbiol. 7, 83–86 (1988)

    Google Scholar 

  184. A. Jawad, H. Seifert, A. M. Snelling, J. Heritage, P. M. Hawkey: Survival of Acinetobacter baumannii on dry surfaces: Comparison of outbreak and sporadic isolates, J. Clin. Microbiol. 36, 1938–1941 (1998)

    CAS  Google Scholar 

  185. L. Boulangé-Petermann, E. Robine, S. Ritoux, B. Cromières: Hygienic assessment of polymeric coatings by physico-chemical and microbiological approaches, J. Adhesion Sci. Tech. 18(2), 213–225 (2004)

    Google Scholar 

  186. S. K. Haack, H. Garchow, D. A. Odelson, L. J. Forney, M. J. Klug: Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities, Appl. Environ. Microbiol. 60, 2483–2493 (1994)

    CAS  Google Scholar 

  187. A. Konopka, L. Oliver, R. F. Turco Jr.: The use of carbon substrate utilization patterns in environmental and ecological microbiology, Microb. Ecol. 3(5), 103–115 (1998)

    Google Scholar 

  188. T. J. White, T. Bruns, S. Lee, J. Taylor: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, ed. by M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Academic, San Diego 1990) pp. 315–322

    Google Scholar 

  189. M. Gardes, T. D. Bruns: ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts, Mol. Ecol. 2, 113–118 (1993)

    CAS  Google Scholar 

  190. K. Göller, D. Rudolph: The need for unequivocally defined reference fungi – genomic variation in two strains named as Coniophora puteana BAM Ebw. 15, Holzforsch. 57, 456–458 (2003)

    Google Scholar 

  191. B. D. Hames, S. J. Higgings (eds): Gene Probes 1. A Practical Approach (Oxford Univ. Press, Oxford 1995)

    Google Scholar 

  192. R. Amann, W. Ludwig: Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology, FEMS Microbiol. Rev. 24, 555–565 (2000)

    CAS  Google Scholar 

  193. M. T. Suzuki, S. J. Giovanni: Bias caused by template annealing in the amplification mixtures of 16S rRNA genes by PCR, Appl. Environ. Microbiol. 62, 625–630 (1996)

    CAS  Google Scholar 

  194. F. van Winzingerode, U. B. Gobel, E. Stackebrandt: Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis, FEMS Microbiol. Rev. 21, 213–229 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ina Stephan Dr. , Peter Askew , Anna Gorbushina Prof. , Manfred Grinda Dipl. , Horst Hertel Ph.D. , Wolfgang Krumbein Prof. , Rolf-Joachim Müller Dr. , Michael Pantke Dipl. , Rüdiger (Rudy) Plarre , Guenter Schmitt Prof. or Karin Schwibbert Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Stephan, I. et al. (2006). Biogenic Impact on Materials. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_14

Download citation

Publish with us

Policies and ethics