Skip to main content

The Tides of the Red Sea

  • Chapter
  • First Online:
Oceanographic and Biological Aspects of the Red Sea

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

This paper describes the present tidal regime in the Red Sea. Both the diurnal and the semidiurnal tidal amplitudes are small because of the constricted connection to the Gulf of Aden and the Indian Ocean, at the Bab el Mandeb Strait. Semidiurnal tides have a classic half-wave pattern, with a central amphidrome, zero tidal range, between Jeddah and Port Sudan. We present a high resolution numerical model output of several tidal constituents, and also model the amphidrome position in terms of ingoing and outgoing tidal Kelvin waves. We quantify the energy budgets for fluxes and dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abohadima S, Rakha KA (2013) Finite element analysis of tidal currents over the Red Sea. Hydrology 1(2):12–17. https://doi.org/10.11648/j.hyd.20130102.11

    Article  Google Scholar 

  • Blain CA, Rogers WE (1998) Coastal tide prediction using the ADCIRC-2DDI hydrodynamic finite element model: model validation and sensitivity analyses in the southern North Sea/English Channel. Formal Report NRL/FR/ 7322-98-9682, Naval Research Laboratory, Stennis Space Center, MS, 92 pp

    Google Scholar 

  • Davies AM, Kwong SCM, Flather RA (1997) A three-dimensional model of diurnal and semi diurnal tides on the European shelf. J Geophys Res 102:8625–8656

    Article  Google Scholar 

  • Defant A (1961) Physical oceanography. Pergamon Press, 598 pp

    Google Scholar 

  • DHI (1963) Handbuch fur das rote Meer und der Golf von Aden. Deutches Hydrographisches Institute, No. 2034

    Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modelling of barotropic ocean tides. J Atmosph Oceanic Technology 19:183–204

    Article  Google Scholar 

  • Elfatih BAE (2010) Tides analysis in the Red Sea in Port Sudan and Gizan. Thesis, Geophysical Institute, University of Bergen, M.Sc

    Google Scholar 

  • Foreman MGG (1977) Manual for tidal heights analysis and prediction. Pac Mar Sci Rep 77–10. Institute of Ocean Sciences, Patricia Bay, B.C., Canada, p 101

    Google Scholar 

  • Foreman MGG (1978) Manual for tidal currents analysis and prediction. Pac Mar Sci Rep 76–6. Institute of Ocean Sciences, Patricia Bay, B.C., Canada, p 70

    Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, 662 pp

    Google Scholar 

  • Grace S (1930) The semi-diurnal tidal motion of the Red Sea. Mon Not Roy Astr Soc Geophys Suppl (March), p 274

    Google Scholar 

  • Green JAM, Nycander J (2013) A comparison of tidal conversion parameterizations for tidal models. J Phys Oceanography 43:104–119. https://doi.org/10.1175/JPO-D-12-023.1

    Article  Google Scholar 

  • Harris RA (1898) Manual of Tides. Published in five parts between 1894 and 1907. U.S. Coast and Geodetic Survey Report. Washington. The Red Sea analyses are in Part four. A modern reprint is available

    Google Scholar 

  • Hendershott MC (1981) Long waves and ocean tides. In: Warren BA, Wunsch C (eds) Evolution of physical oceanography. MIT Press, Cambridge, MA, pp 292–341

    Google Scholar 

  • International Hydrographic Organization (IHO), Tidal Constituent Bank (1979) Station Catalogue. Ocean and Aquatic Sciences, Dept. of Fisheries and Oceans, Ottawa, Canada

    Google Scholar 

  • Jarosz E, Blain CA (2010) High resolution model of the barotropic tides for the Red Sea. Final Report to WHOI, February 2010

    Google Scholar 

  • Jarosz E, Murray SP, Inoue M (2005a) Observations on characteristics of tides in the Bab El Mandeb Strait. J Geophys Res 110:C03015. https://doi.org/10.1029/2004JC002299

    Article  Google Scholar 

  • Jarosz E, Blain CA, Murray SP, Inoue M (2005b) Barotropic tides in the Bab El Mandeb Strait. Cont Shelf Res 25:1225–1247

    Article  Google Scholar 

  • Jeffreys H (1976) The Earth, its origin, history and physical constitution (6th Edition). Cambridge University Press, Cambridge, p 574

    Google Scholar 

  • Kolar RL, Gray WG, Westerink JJ, Luettich RA (1994) Shallow water modeling in spherical coordinates: equation formulation, numerical implementation, and application. J Hydraul Res 32:3–24

    Article  Google Scholar 

  • Lamb H (1932) Hydrodynamics. Cambridge University Press, 738 pp

    Google Scholar 

  • Lefevre F, Lyard FH, Le Provost C (2002) FES99: a global tide finite element solution assimilating tide gauge and altimetric information. J Atmos Oceanic Technol 19:1346–1356

    Article  Google Scholar 

  • Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries, Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Technical Report DRP-92-6, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS, 137 pp

    Google Scholar 

  • Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comp Fluid 7:207–228

    Article  Google Scholar 

  • Madah F, Mayerle R, Bruss G, Bento J (2015) Characteristics of tides in the Red Sea region, a numerical model study. Open J Marine Sci 5:193–209. https://doi.org/10.4236/ojms.2015.52016

    Article  Google Scholar 

  • Mohamad KAIA (2012) Sea level variation in the Red Sea based on SODA data. Thesis, Geophysical Institute, University of Bergen, M.Sc

    Google Scholar 

  • Monismith SG, Genin A (2004) Tides and sea level in the Gulf of Aqaba (Eilat). J Geophys Res 109:C04015

    Article  Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Ann Rev 8:73–202

    Google Scholar 

  • Munk W (1997) Once again: once again—tidal friction. Prog Oceanog 40:7–35

    Article  Google Scholar 

  • Murray SP, Johns W (1997) Direct observations of seasonal exchange through the Bab el Mandeb Strait. Geophys Res Lett 24:2557–2560

    Article  Google Scholar 

  • Naval Oceanographic Office (NAVOCEANO) (1997) Data base description for Digital Bathymetric Data Base-Variable Resolution (DBDB-V), Version 1.0. Internal Report, Naval Oceanographic Office, Stennis Space Center, MS

    Google Scholar 

  • Patzert WC (1974) Wind-induced reversal in Red Sea circulation. Deep Sea Res 21:109–121

    Google Scholar 

  • Proudman J (1953) Dynamical oceanography. Methuen, London, p 410

    Google Scholar 

  • Pugh DT (1981) Tidal amphidrome movement and energy dissipation in the Irish Sea. Geophys J R Astron Soc 67:515–527

    Article  Google Scholar 

  • Pugh DT, Woodworth PL (2014) Sea-level science: understanding tides, surges, tsunamis and mean sea level changes. Cambridge University Press, 395 pp

    Google Scholar 

  • Pugh DT, Abualnaja Y (2015) Sea-Level changes. In: Rasul NMA, Stewart ICF (eds) the red sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin Heidelberg, pp 317-328. https://doi.org/10.1007/978-3-662-45201-1_18

    Google Scholar 

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21:1897–1910

    Article  Google Scholar 

  • Reid RO (1990) Water level changes. In: Herbich J (ed) Handbook of coastal and ocean engineering. Gulf Publishing, Houston, TX

    Google Scholar 

  • Schwiderski EW (1980) On charting global ocean tides. Rev Geophys 18:243–268

    Article  Google Scholar 

  • Sultan SAR, Ahmad F, Elghribi NM (1995) Sea level variability in the central Red Sea. Oceanol Acta 18(6):607–615

    Google Scholar 

  • Sultan SAR, Elghribi NM (2003) Sea level changes in the central part of the Red Sea. Indian J Marine Sci 32:114–122

    Google Scholar 

  • Taylor GI (1920) Tidal friction in the Irish Sea. Phil Trans Roy Soc London A 220:1–33. https://doi.org/10.1098/rsta.1920.0001

    Article  Google Scholar 

  • Taylor GI (1922) Tidal oscillations in gulfs and rectangular basins. Proc London Math Soc S20:148–181. https://doi.org/10.1112/plms/s2-20.1.148

    Article  Google Scholar 

  • Vercelli F (1925) Richerche di oceanografia fisica eseguite della R. N. AMMIRAGILIO MAGNAGHI (1923–24), Part I. Correnti e mare. Annali Idrografici 11:1–188

    Google Scholar 

  • Vercelli F (1927) Richerche di oceanografia fisica eseguite della R. N. AMMIRAGILIO MAGNAGHI (1923–24), Part IV, La temperatura e la salinita. Annali Idrografici 11:1–66

    Google Scholar 

  • Vercelli F (1931) Nuove ricerche sullen correnti marine nel Mar Rosso. Annali Idrografico 12:424–428

    Google Scholar 

  • Wahr J (1981) Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys J R Astron Soc 64:677–703

    Article  Google Scholar 

  • Westerink JJ, Blain CA, Luettich RA, Scheffner NW (1994) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries. Report 2: Users manual for ADCIRC-2DDI. Dredging Research Program Technical Report DRP-92-6, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS, 156 pp

    Google Scholar 

  • Yang Y, Zuo J, Li J, Jia Sun J, Wei Tan W (2013) Simulation of the tide in the Red Sea and the Gulf of Aden. Proceedings of the twenty-third (2013) International offshore and polar engineering anchorage, Alaska, USA, June 30–July 5, 2013. Published by the international society of offshore and polar engineers (ISOPE). ISBN 978-1-880653-99–9; ISSN 1098-6189

    Google Scholar 

Download references

Acknowledgements

Several colleagues have helped substantially in this work, particularly in the collection of data, sometimes in difficult locations. Elfatih Bakry, Ahmed Eltaib, and the Institute of Marine Research, Red Sea University, Port Sudan, managed the measurements in the Sudan, often in environmentally difficult conditions. The KAUST sea level and current observations were curated by Mohammedali Nellayaputhenpeedika. The excellent strategic series of sea level measurements along the Saudi Arabian coast were made available, courtesy of the President of the Saudi General Commission for Survey. Within the GCS, it is a pleasure to acknowledge several valuable discussions on Red Sea tides with inter alia, Mohammed Al Harbi, Dr. N. T. Manoj, and Salem Salman Salem Al-Ghzwani. In addition, the work has been encouraged and advised by Dr. Dirar Nasr, Dr. Ian Vassie and Dr. Philip Woodworth. We are grateful to Dr. Mattias Green for help with the section on altimetry data and Fig. 2.4, and for suggestions on the importance of internal tidal energy dissipation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Pugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pugh, D.T., Abualnaja, Y., Jarosz, E. (2019). The Tides of the Red Sea. In: Rasul, N., Stewart, I. (eds) Oceanographic and Biological Aspects of the Red Sea. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-99417-8_2

Download citation

Publish with us

Policies and ethics