Skip to main content

Extracellular Matrix Stiffness Exists in a Feedback Loop that Drives Tumor Progression

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1092))

Abstract

Cells communicate constantly with their surrounding extracellular matrix (ECM) to maintain homeostasis, using both mechanical and chemical signals. In cancer, abnormal signaling leads to stiffening of the ECM. A stiff microenvironment affects many aspects of the cell, including internal molecular signaling as well as behaviors such as motility and proliferation. Thus, cells and ECM interact in a feedback loop to drive matrix deposition and cross-linking, which alter the mechanical properties of the tissue. Stiffer tissue enhances the invasive potential of a tumor and decreases therapeutic efficacy. This chapter describes how specific molecular effects caused by an abnormally stiff tissue drive macroscopic changes that help determine disease outcome. A complete understanding may foster the generation of new cancer therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloproteinase

ADAMTS:

ADAMs with thrombospondin motifs

BM:

Basement membrane

CAM:

Chorioallantoic membrane

CB:

Cajal body

CSC:

Cancer stem cell

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

FAP:

Fibroblast activation protein

HIF:

Hypoxia-inducible factor

IFP:

Interstitial fluid pressure

ILK:

Integrin-linked kinase

LINC:

Linker of nucleoskeleton and cytoskeleton

MMP:

Matrix metalloproteinase

MRTF:

Myocardin-related transcription factor

MSC:

Mesenchymal stem cell

PTEN:

Phosphatase and tensin homologue

ROCK:

Rho-associated protein kinase

TAZ:

Transcriptional coactivator with PDZ-binding motif

TGF:

Transforming growth factor

TIMP:

Tissue inhibitor of MMP

VEGF:

Vascular endothelial growth factor

YAP:

Yes-associated protein

5FU:

Fluorouracil

References

  1. Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209(2):139–151

    Article  CAS  Google Scholar 

  2. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406

    Article  CAS  Google Scholar 

  3. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  CAS  Google Scholar 

  4. Malta DF, Reticker-Flynn NE, da Silva CL, Cabral JM, Fleming HE, Zaret KS, Bhatia SN, Underhill GH (2016) Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater 34:30–40

    Article  CAS  Google Scholar 

  5. Polyak K, Kalluri R (2010) The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol 2(11):a003244

    Article  CAS  Google Scholar 

  6. Silberstein GB, Strickland P, Coleman S, Daniel CW (1990) Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol 110(6):2209–2219

    Article  CAS  Google Scholar 

  7. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049

    Article  CAS  Google Scholar 

  8. Dolberg DS, Bissell MJ (1984) Inability of rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309(5968):552–556

    Article  CAS  Google Scholar 

  9. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72(9):3585–3589

    Article  CAS  Google Scholar 

  10. Bischoff F, Bryson G (1964) Carcinogenesis through solid state surfaces. Prog Exp Tumor Res 5:85–133

    Article  CAS  Google Scholar 

  11. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell 121(3):335–348

    Article  CAS  Google Scholar 

  12. Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, Couderc B, Escourrou G, Valet P, Muller C (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73(18):5657–5668

    Article  CAS  Google Scholar 

  13. Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, Karnezis AN, Tjoe JA, Marx J, Parvin B, Tlsty TD (2013) Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15(3):249–262

    Article  CAS  Google Scholar 

  14. Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS, Nelson CM, Jakobsson L, Betsholtz C, Sund M, Karlsson MC, Fuxe J (2016) Tgf-beta1-induced emt promotes targeted migration of breast cancer cells through the lymphatic system by the activation of ccr7/ccl21-mediated chemotaxis. Oncogene 35(6):748–760

    Article  CAS  Google Scholar 

  15. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine wnt-pcp signaling in breast cancer cell migration. Cell 151(7):1542–1556

    Article  CAS  Google Scholar 

  16. Tang X, Hou Y, Yang G, Wang X, Tang S, Du YE, Yang L, Yu T, Zhang H, Zhou M, Wen S, Xu L, Liu M (2016) Stromal mir-200s contribute to breast cancer cell invasion through caf activation and ecm remodeling. Cell Death Differ 23(1):132–145

    Article  CAS  Google Scholar 

  17. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO (2014) Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. elife 3:e01308

    Article  Google Scholar 

  18. Bocker W, Bier B, Freytag G, Brommelkamp B, Jarasch ED, Edel G, Dockhorn-Dworniczak B, Schmid KW (1992) An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen iv and laminin. Part II: Epitheliosis and ductal carcinoma in situ. Virchows Arch A Pathol Anat Histopathol 421(4):323–330

    Article  CAS  Google Scholar 

  19. Pang MF, Siedlik MJ, Han S, Stallings-Mann M, Radisky DC, Nelson CM (2016) Tissue stiffness and hypoxia modulate the integrin-linked kinase ilk to control breast cancer stem-like cells. Cancer Res 76(18):5277–5287

    Article  CAS  Google Scholar 

  20. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    Article  CAS  Google Scholar 

  21. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38

    Article  Google Scholar 

  22. Starborg T, Lu Y, Kadler KE, Holmes DF (2008) Electron microscopy of collagen fibril structure in vitro and in vivo including three-dimensional reconstruction. Methods Cell Biol 88:319–345

    Article  CAS  Google Scholar 

  23. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178

    Article  CAS  Google Scholar 

  24. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  Google Scholar 

  25. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12). https://doi.org/10.1101/cshperspect.a005058

    Article  Google Scholar 

  26. Bourd-Boittin K, Bonnier D, Leyme A, Mari B, Tuffery P, Samson M, Ezan F, Baffet G, Theret N (2011) Protease profiling of liver fibrosis reveals the Adam metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta. Hepatology 54(6):2173–2184

    Article  CAS  Google Scholar 

  27. Wells RG, Discher DE (2008) Matrix elasticity, cytoskeletal tension, and tgf-beta: the insoluble and soluble meet. Sci Signal 1(10):pe13

    Article  Google Scholar 

  28. Roeb E, Purucker E, Breuer B, Nguyen H, Heinrich PC, Rose-John S, Matern S (1997) Timp expression in toxic and cholestatic liver injury in rat. J Hepatol 27(3):535–544

    Article  CAS  Google Scholar 

  29. Jackson HW, Defamie V, Waterhouse P, Khokha R (2017) Timps: Versatile extracellular regulators in cancer. Nat Rev Cancer 17(1):38–53

    Article  CAS  Google Scholar 

  30. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Fukui H (2002) Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology 36(4 Pt 1):850–860

    Article  CAS  Google Scholar 

  31. Kim YM, Kim EC, Kim Y (2011) The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin. Mol Biol Rep 38(1):145–149

    Article  CAS  Google Scholar 

  32. Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW (2006) Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn 235(12):3222–3229

    Article  CAS  Google Scholar 

  33. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M, Mikels A, Vaysberg M, Ghermazien H, Wai C, Garcia CA, Velayo AC, Jorgensen B, Biermann D, Tsai D, Green J, Zaffryar-Eilot S, Holzer A, Ogg S, Thai D, Neufeld G, Van Vlasselaer P, Smith V (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16(9):1009–1017

    Article  CAS  Google Scholar 

  34. Egeblad M, Rasch MG, Weaver VM (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22(5):697–706

    Article  CAS  Google Scholar 

  35. Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P, Munro J, Schroder E, Zhou J, Brunton VG, Barker N, Clevers H, Sansom OJ, Anderson KI, Weaver VM, Olson MF (2011) Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19(6):776–791

    Article  CAS  Google Scholar 

  36. Ibbetson SJ, Pyne NT, Pollard AN, Olson MF, Samuel MS (2013) Mechanotransduction pathways promoting tumor progression are activated in invasive human squamous cell carcinoma. Am J Pathol 183(3):930–937

    Article  CAS  Google Scholar 

  37. Decitre M, Gleyzal C, Raccurt M, Peyrol S, Aubert-Foucher E, Csiszar K, Sommer P (1998) Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas. Lab Investig 78(2):143–151

    CAS  PubMed  Google Scholar 

  38. Erler JT, Weaver VM (2009) Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26(1):35–49

    Article  Google Scholar 

  39. Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL (2013) Hypoxia-inducible factor 1 (hif-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing p4ha1, p4ha2, and plod2 expression in fibroblasts. J Biol Chem 288(15):10819–10829

    Article  CAS  Google Scholar 

  40. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

    Article  CAS  Google Scholar 

  41. Merdad A, Karim S, Schulten HJ, Dallol A, Buhmeida A, Al-Thubaity F, Gari MA, Chaudhary AG, Abuzenadah AM, Al-Qahtani MH (2014) Expression of matrix metalloproteinases (mmps) in primary human breast cancer: Mmp-9 as a potential biomarker for cancer invasion and metastasis. Anticancer Res 34(3):1355–1366

    CAS  PubMed  Google Scholar 

  42. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase mmp3/stromelysin-1 promotes mammary carcinogenesis. Cell 98(2):137–146

    Article  CAS  Google Scholar 

  43. Shao S, Li Z, Gao W, Yu G, Liu D, Pan F (2014) Adam-12 as a diagnostic marker for the proliferation, migration and invasion in patients with small cell lung cancer. PLoS One 9(1):e85936

    Article  Google Scholar 

  44. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  Google Scholar 

  45. Zhao XH, Laschinger C, Arora P, Szaszi K, Kapus A, McCulloch CA (2007) Force activates smooth muscle alpha-actin promoter activity through the rho signaling pathway. J Cell Sci 120(Pt 10):1801–1809

    Article  CAS  Google Scholar 

  46. Lee K, Chen QK, Lui C, Cichon MA, Radisky DC, Nelson CM (2012) Matrix compliance regulates rac1b localization, nadph oxidase assembly, and epithelial-mesenchymal transition. Mol Biol Cell 23(20):4097–4108

    Article  CAS  Google Scholar 

  47. Pechoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW (1999) Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol 206(1):88–99

    Article  CAS  Google Scholar 

  48. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94(3):849–854

    Article  CAS  Google Scholar 

  49. Denais C, Lammerding J (2014) Nuclear mechanics in cancer. Adv Exp Med Biol 773:435–470

    Article  Google Scholar 

  50. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, De Jesus-Acosta A, Sharma P, Heidari P, Mahmood U, Chin L, Moses HL, Weaver VM, Maitra A, Allison JP, LeBleu VS, Kalluri R (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734

    Article  CAS  Google Scholar 

  51. Ishihara S, Yasuda M, Harada I, Mizutani T, Kawabata K, Haga H (2013) Substrate stiffness regulates temporary nf-kappab activation via actomyosin contractions. Exp Cell Res 319(19):2916–2927

    Article  CAS  Google Scholar 

  52. Hansen RK, Bissell MJ (2000) Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones. Endocr Relat Cancer 7(2):95–113

    Article  CAS  Google Scholar 

  53. Mouw JK, Yui Y, Damiano L, Bainer RO, Lakins JN, Acerbi I, Ou G, Wijekoon AC, Levental KR, Gilbert PM, Hwang ES, Chen YY, Weaver VM (2014) Tissue mechanics modulate microrna-dependent pten expression to regulate malignant progression. Nat Med 20(4):360–367

    Article  CAS  Google Scholar 

  54. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  Google Scholar 

  55. Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15(1):147–154

    Article  CAS  Google Scholar 

  56. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9): 4426–4438

    Article  CAS  Google Scholar 

  57. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between tgf-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 23(5):781–791

    Article  CAS  Google Scholar 

  58. Lin HH, Lin HK, Lin IH, Chiou YW, Chen HW, Liu CY, Harn HI, Chiu WT, Wang YK, Shen MR, Tang MJ (2015) Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget 6(25):20946–20958

    PubMed  PubMed Central  Google Scholar 

  59. Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, Blackman BR, Tschumperlin DJ, Parsons JT (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5(9):e12905

    Article  Google Scholar 

  60. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695

    Article  CAS  Google Scholar 

  61. Gade TP, Buchanan IM, Motley MW, Mazaheri Y, Spees WM, Koutcher JA (2009) Imaging intratumoral convection: pressure-dependent enhancement in chemotherapeutic delivery to solid tumors. Clin Cancer Res 15(1):247–255

    Article  CAS  Google Scholar 

  62. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4): 239–252

    Article  CAS  Google Scholar 

  63. Oldberg A, Kalamajski S, Salnikov AV, Stuhr L, Morgelin M, Reed RK, Heldin NE, Rubin K (2007) Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc Natl Acad Sci U S A 104(35):13966–13971

    Article  CAS  Google Scholar 

  64. Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR, Johnson CD, Benyon RC, Iredale JP (2004) Type i collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10(21):7427–7437

    Article  CAS  Google Scholar 

  65. Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C, Chilvers ER, Dransfield I, Donnelly SC, Strieter R, Haslett C (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5(6):662–668

    Article  CAS  Google Scholar 

  66. Kim MH, Kim J, Hong H, Lee SH, Lee JK, Jung E, Kim J (2016) Actin remodeling confers braf inhibitor resistance to melanoma cells through yap/taz activation. EMBO J 35(5):462–478

    Article  CAS  Google Scholar 

  67. Zanconato F, Piccolo S (2016) Eradicating tumor drug resistance at its yap-biomechanical roots. EMBO J 35(5):459–461

    Article  CAS  Google Scholar 

  68. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    Article  CAS  Google Scholar 

  69. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, Chen M, Xu G, Ren K, Wei Y (2016) Targeting of cancerassociated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep 13(3):2476–2484

    Article  CAS  Google Scholar 

  70. Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116(7):1955–1962

    Article  CAS  Google Scholar 

  71. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, De Jesus-Acosta A, Sharma P, Heidari P, Mahmood U, Chin L, Moses HL, Weaver VM, Maitra A, Allison JP, LeBleu VS, Kalluri R (2015) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 28(6):831–833

    Article  CAS  Google Scholar 

  72. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E, Tello M, Osteso-Ibanez T, Pellinen T, Echarri A, Cerezo A, Klein-Szanto AJ, Garcia R, Keely PJ, Sanchez-Mateos P, Cukierman E, Del Pozo MA (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1):148–163

    Article  CAS  Google Scholar 

  73. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  Google Scholar 

  74. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) Vegfr1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simi, A.K., Pang, MF., Nelson, C.M. (2018). Extracellular Matrix Stiffness Exists in a Feedback Loop that Drives Tumor Progression. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_4

Download citation

Publish with us

Policies and ethics