Skip to main content

Small-Size Vanadium Redox Flow Batteries: An Environmental Sustainability Analysis via LCA

  • Chapter
  • First Online:
Book cover Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Electrical energy production from renewable sources has dramatically grown in the recent years in the developed countries, putting the hard problem to be solved of supply discontinuity. How to reach high efficiency and reliability of electrical energy storage system is thus now one of the most challenging goals to be reached: among all, one of the most simple and widespread to use is the electrochemical storage systems. This paper analyzes the sustainability of a small vanadium redox flow battery performed by an LCA approach. This electrical energy storage system was selected for its significant advantages in use, such as the almost infinite lifetime of the vanadium electrolytes, which represent a potentially significant advantage in terms of a sustainable future made of less fossil fuels and more renewable energy. In fact, the LCA analysis performed shows that the production of the battery has a moderate impact, including the effect toxicity while at the end of life, the material and the electrolyte are completely reusable with a small fraction that goes to landfill disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335. https://doi.org/10.1016/j.rser.2013.08.001

    Article  Google Scholar 

  • Arbabzadeh M et al (2015) Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration. Appl Energy 146:397–408

    Article  Google Scholar 

  • Bartolozzi M (1989) Development of redox flow batteries. A historical bibliography. J Power Sources 27:219–234

    Article  Google Scholar 

  • Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W (2010) Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev 14:302–314

    Article  Google Scholar 

  • Chen H, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312. https://doi.org/10.1016/j.pnsc.2008.07.014

    Article  Google Scholar 

  • Cunha A, Martins J, Rodrigues N, Brito FP (2015) Vanadium redox flow batteries: a technology review. Int J Energy Res 39:889e918. http://dx.doi.org/10.1002/er.3260

    Article  Google Scholar 

  • Dassisti M, Mastrorilli P, Rizzuti A, L’Abbate P, Cozzolino G, Chimienti M (2015) LCA of in-house producED SMAll-SIZED vanadium redox-flow batterY. State Art Energy Dev 11:232

    Google Scholar 

  • Dassisti M, Mastrorilli P, Rizzuti A, Cozzolino G, Chimienti M, Olabi AG, Matera F, Carbone A (2016) Vanadium: a transition metal for sustainable energy storing in redox flow batteries. In: Saleem H (editor-in-chief) Reference module in materials science and materials engineering. Elsevier, Oxford, pp 1–24. ISBN 978-0-12-803581-8

    Google Scholar 

  • Dell RM, Rand DA (2001) Energy storage—a key technology for global energy sustainability. J Power Sources 100:2–17

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Heck T, Hellweg S et al (2007) Ecoinvent v2.0: overview and methodology. Dübendorf, Switzerland: swiss Centre for Life Cycle In- ventories. Technical Report No. 1 Ecoinvent

    Google Scholar 

  • Giner J, Swette L, Cahill K (1976) Screening of redox couples and electrode materials

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, Schryver AD, Struijs J, Zelm RV (2009) “ReCiPe 2008.” A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1,Netherlands, 2009, 1−126

    Google Scholar 

  • Guinee JB (2002) Handbook on life cycle assessment operational guide to the ISO standards. Int J Life Cycle Assess 7:311e3

    Article  Google Scholar 

  • Hiremath M, Derendorf K, Vogt T (2015) Comparative life cycle assessment of battery storage systems for stationary applications. Environ Sci Technol 49:4825–4833

    Article  Google Scholar 

  • Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12(5):1221–1250

    Article  Google Scholar 

  • International Electrotechnical Commission (2012) White paper electrical energy storage. https://www.iec.ch/whitepaper/energystorage/?ref=gspromo

  • ISO (International Organization for Standardization) 14040 standard (2006a) Environmental management–life cycle assessment–principles and framework

    Google Scholar 

  • ISO (International Organization for Standardization) 14044 standard (2006b) Environmental management–life cycle assessment–requirements and guidelines

    Google Scholar 

  • Jolliet O et al (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324

    Article  Google Scholar 

  • Jungbluth N, Tuchschmid M, de Wild-Scholten M (2008) Life Cycle Assessment of Photovoltaics: update of ecoinvent data V2. 0. ESU-services Ltd

    Google Scholar 

  • Kear G, Shah AA, Walsh FC (2012) Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. Int J Energy Res 36:1105–1120. https://doi.org/10.1002/er1863

    Article  Google Scholar 

  • Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4(4):1147–1160

    Article  Google Scholar 

  • Liyu L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B et al (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394e400. http://dx.doi.org/10.1002/aenm.201100008

  • Nehrir MH, Wang C, Strunz K, Aki H, Ramakumar R, Bing J, Nehrir Z (2011) A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control, and applications. IEEE Trans Sustain Energy 2(4):392–403

    Article  Google Scholar 

  • Pehnt M (2006) Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew Energy 31(1):55–71

    Article  Google Scholar 

  • Poullikkas A (2013) A comparative overview of large-scale battery systems for electricity storage. Renew Sustain Energy Rev 27:778–788

    Article  Google Scholar 

  • Rosenbaum RK et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532

    Article  Google Scholar 

  • Rydh CJ (1999) Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J Power Sources 80(1–2):21–29

    Article  Google Scholar 

  • Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements. Energy Convers Manage 46(11–12):1957–1979

    Article  Google Scholar 

  • Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H (2010) Recent advances with UNSW vanadium-based redox flow batteries. Int J Energy Res 34(2):182–189

    Article  Google Scholar 

  • Tang Ao et al (2012) Thermal modelling and simulation of the all-vanadium redox flow battery. J Power Sources 203:165–176

    Article  Google Scholar 

  • Unterreiner L, Jülch V, Reith S (2016) Recycling of battery technologies—ecological impact analysis using Life Cycle Assessment (LCA). Energy Proced 99:229–234

    Article  Google Scholar 

  • Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137

    Article  Google Scholar 

  • Jungbluth, Niels, Matthias Tuchschmid, and Mariska de Wild-Scholten. "Life Cycle Assessment of Photovoltaics: update of ecoinvent data V2. 0." ESU-services Ltd (2008).

    Google Scholar 

  • Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A. D.; Struijs, J.; Zelm, R. V. ReCiPe 2008; Netherlands, 2009, 1−126

    Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Heck T, Hellweg S et al. (2007) Ecoinvent v2.0: Overview and methodology. Dübendorf, Switzerland: Swiss Centre for Life Cycle In- ventories. Technical Report Ecoinvent No. 1

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Duferco Project from Inreslab s.c.a.r.l. Monopoli for partially supporting the present analysis. This work  has been published under the moral patronage of the SOSTENERE group of the AITEM (www.aitem.org)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasqua L’Abbate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

L’Abbate, P., Dassisti, M., Olabi, A.G. (2019). Small-Size Vanadium Redox Flow Batteries: An Environmental Sustainability Analysis via LCA. In: Basosi, R., Cellura, M., Longo, S., Parisi, M. (eds) Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-93740-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93740-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93739-7

  • Online ISBN: 978-3-319-93740-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics