Skip to main content

Biological Wastewater Treatment Technologies for BPA Removal

  • Chapter
  • First Online:

Abstract

Biological degradation is considered one of the most effective ways to reduce the estrogenic activity of BPA in wastewater and to remove BPA from the environment. Indeed, using the metabolic potential of microorganisms to mineralize pollutants is considered a safer and more economic alternative to widely used physico-chemical processes. Although BPA is not readily biodegradable and is considered a pseudo-persistent in the environment, it could be over 90% eliminated using adapted microorganisms. BPA concentrations in the effluents from full-scale wastewater treatment plants (WWTPs) indicate that this compound is not completely degraded during wastewater treatment. Thus, the development of efficient biological methods is crucial.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abargues MR, Ferrer J, Bouzas A et al (2013) Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae. Bioresour Technol 149:142–148

    Article  CAS  Google Scholar 

  • Aguayo S, Munoz MJ, de la Torre A et al (2004) Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Sci Total Environ 328:69–81

    Article  CAS  Google Scholar 

  • Alpaslan Kocamemi B, Cecen F (2007) Inhibitory effect of the xenobiotic 1,2-DCA in a nitrifying biofilm reactor. Water Sci Technol 55:67–73

    Article  CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991) Effects of toxicity, aeration, and reductant supply on TCE transformation by a mixed methanotrophic culture. Appl Environ Microbiol 57:228–235

    CAS  Google Scholar 

  • Auirol M, Filali-Meknassi Y, Tyagi RD et al (2006) Endocrine disrupting compounds removal from wastewater: a new challenge. Process Biochem 41:525–539

    Article  CAS  Google Scholar 

  • Balest L, Lopez A, Mascolo G et al (2008) Removal of endocrine disrupter compounds from municipal wastewater using an aerobic granular biomass reactor. Biochem Eng J 41:288–294

    Article  CAS  Google Scholar 

  • Bertanza G, Pedrazzani R, Dal Grande M et al (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45:2473–2484

    Article  CAS  Google Scholar 

  • Boonnorat J, Chiemchaisri C, Chiemchaisri W et al (2014) Removals of phenolic compounds and phthalic acid esters in landfill leachate by microbial sludge of two-stage membrane bioreactor. J Hazard Mater 277:93–101

    Article  CAS  Google Scholar 

  • Boonyaroj V, Chiemchaisri C, Chiemchaisri W et al (2012) Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate. Bioresour Technol 113:174–180

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD et al (2008) Bacillus thuringiensis fermentation of wastewater and wastewater sludge—presence and characterization of chitinases. Environ Technol 29:161–170

    Article  CAS  Google Scholar 

  • Cabana H, Jiwan JLH, Rozenberg R et al (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778

    Article  CAS  Google Scholar 

  • Cases V, Alonso V, Argandoña V et al (2011) Endocrine disrupting compounds: a comparison of removal between conventional activated sludge and membrane bioreactors. Desalination 272:240–245

    Article  CAS  Google Scholar 

  • Chen J, Huang X, Lee D (2008) Bisphenol A removal by a membrane bioreactor. Process Biochem 43:451–456

    Article  CAS  Google Scholar 

  • Chong NM, Chen YS (2007) Activated sludge treatment of a xenobiotic with or without a biogenic substrate during start-up and shocks. Bioresour Technol 98:3611–3616

    Article  CAS  Google Scholar 

  • Chong NM, Lin TY (2007) Measurement of the degradation capacity of activated sludge for a xenobiotic organic. Bioresour Technol 98:1124–1127

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Saracevic E et al (2004) Adsorption of bisphenol A, 17β-ethinylestradiole to sewage sludge. Chemosphere 56:843–851

    Article  CAS  Google Scholar 

  • Clara M, Kreuzinger N, Strenn B et al (2005a) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Gans O et al (2005b) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807

    Article  CAS  Google Scholar 

  • Daims H, Purkhold U, Bjerrum L et al (2001) Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci Technol 43:9–18

    Article  CAS  Google Scholar 

  • Demarche P, Junghanns C, Mazy N et al (2012a) Design-of-experiment strategy for the formulation of laccase biocatalysts and their application to degrade bisphenol A. New Biotechnol 30:96–103

    Article  CAS  Google Scholar 

  • Demarche P, Junghanns C, Nair RR et al (2012b) Harnessing the power of enzymes for environmental stewardship. Biotech Adv 30:933–953

    Article  CAS  Google Scholar 

  • De Wever H, Weiss S, Reemtsma T et al (2007) Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment. Water Res 41:935–945

    Article  CAS  Google Scholar 

  • Drewes JE, Hemming J, Ladenburger DJ et al (2005) An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ Res 77:12–23

    Article  CAS  Google Scholar 

  • Eio EJ, Kawai M, Tsuchiya K et al (2014) Biodegradation of bisphenol A by bacterial consortia. Int Biodeterior Biodegrad 96:166–173

    Article  CAS  Google Scholar 

  • Falas P, Baillon-Dhumez A, Andersen HR et al (2012) Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals. Water Res 46:1167–1175

    Article  CAS  Google Scholar 

  • Fatone F, Bolzonella D, Battistoni P et al (2005) Removal of nutrients and micropollutants treating low loaded wastewaters in a membrane bioreactor operating the automatic alternate-cycles process. Desalination 183:395–405

    Article  CAS  Google Scholar 

  • Felis E, Borok S, Miksch K (2011) The evaluation of the selected hormonal biomimetics for sorption on the flocs of activated sludge (Ocena zdolności wybranych biomimetyków hormonalnych do sorpcji na kłaczkach osadu czynnego). Ochrona Środowiska 33:49–52 (In Polish language)

    Google Scholar 

  • Fent G, Hein WJ, Moendel M et al (2003) Fate of 14C-bisphenol A in soils. Chemosphere 51:735–746

    Article  CAS  Google Scholar 

  • Fernandez MP, Ikonomou MG, Buchanan I (2007) Assessment of estrogenic organic contaminants in Canadian wastewater. Sci Total Environ 373:250–269

    Article  CAS  Google Scholar 

  • Fernandez MP, Noguerol T, Lacorte S et al (2009) Toxicity identification fractionation of environmental estrogens in waste water and sludge using gas and liquid chromatography coupled to mass spectrometry and recombinant yeast assay. Anal Bioanal Chem 393:957–968

    Article  CAS  Google Scholar 

  • Fernandez-Fontaina E, Omil F, Lema JM et al (2012) Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutant. Water Res 46:5434–5444

    Article  CAS  Google Scholar 

  • Ferro Orozco AM, Lobo CC, Contreras EM et al (2013) Biodegradation of bisphenol-A (BPA) in activated sludge batch reactors: analysis of the acclimation process. Int Biodeter Biodegr 85:392–399

    Article  CAS  Google Scholar 

  • Fürhacker M, Scharf S, Weber H (2000) Bisphenol A: emissions from point sources. Chemosphere 41:751–756

    Article  Google Scholar 

  • Guerra P, Kim M, Teslic S et al (2015) Bisphenol-A removal in various wastewater treatment processes: operational conditions, mass balance, and optimization. J Environ Manag 152:192–200

    Article  CAS  Google Scholar 

  • Guo W, Ngo HH, Li J (2012) A mini-review on membrane fouling. Bioresour Technol 122:27–34

    Article  CAS  Google Scholar 

  • Höhne C, Puttmann W (2008) Occurrence and temporal variations of the xenoestrogens bisphenol A, 4-tert-octylphenol, and tech. 4-nonylphenol in two German wastewater treatment plants. Environ Sci Pollut Res Int 15:405–416

    Article  CAS  Google Scholar 

  • Ike M, Chen MY, Danzl E et al (2006) Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. Water Sci Technol 53:153–159

    Article  CAS  Google Scholar 

  • Ivashechkin P, Corvini PFX, Dohmann M (2004) Behaviour of endocrine disrupting chemicals during the treatment of municipal sewage sludge. Water Sci Technol 50:133–140

    Article  CAS  Google Scholar 

  • Jacobsen BN, Kjersgaard D, Winther-Nielsen M et al (2004) Combined chemical analyses and biomonitoring at avedoere wastewater treatment plant in 2002. Water Sci Technol 50:37–43

    Article  CAS  Google Scholar 

  • Jewell KS, Wick A, Ternes TA (2014) Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge. Water Res 48:478–489

    Article  CAS  Google Scholar 

  • Jiang JQ, Yin Q, Zhou JL et al (2005) Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere 61:544–550

    Article  CAS  Google Scholar 

  • Joss A, Zabczynski S, Gobel A et al (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    Article  CAS  Google Scholar 

  • Kang JH, Kondo F (2002a) Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Chemosphere 49:493–498

    Article  CAS  Google Scholar 

  • Kang JH, Kondo F (2002b) Bisphenol A degradation by bacteria isolated from river water. Arch Environ Contam Toxicol 43:265–269

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380

    Article  CAS  Google Scholar 

  • Kim YI, Nicell JA (2006) Impact of reaction conditions on the laccase-catalysed conversion of bisphenol A. Bioresour Technol 97:1431–1442

    Article  CAS  Google Scholar 

  • Kim S, Eichhorn P, Jensen JN et al (2005) Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39:5816–5823

    Article  CAS  Google Scholar 

  • Kim JY, Ryu K, Kim EJ et al (2007) Degradation of bisphenol A and nonylphenol by nitrifying activated sludge. Process Biochem 42:1470–1474

    Article  CAS  Google Scholar 

  • Klečka GM, Gonsior SJ, West RJ et al (2001) Biodegradation of bisphenol A in aquatic environments: river die-away. Environ Toxicol Chem 20:2725–2735

    Article  Google Scholar 

  • Koponen PS, Kukkonen JVK (2001) Effects of bisphenol A and artificial UVB radiation on the early development of Rana temporaria. J Toxicol Environ Health A 65:947–959

    Article  CAS  Google Scholar 

  • Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    CAS  Google Scholar 

  • Langford K, Scrimshaw M, Lester J (2007) The impact of process variables on the removal of PBDEs and NPEOs during simulated activated sludge treatment. Arch Environ Contam Toxicol 53:1–7

    Article  CAS  Google Scholar 

  • LaPara TM, Nakatsu CH, Pantea LM et al (2002) Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res 36:638–646

    Article  CAS  Google Scholar 

  • LaPara TM, Klatt CG, Chen R (2006) Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater. J Biotechnol 121:368–380

    Article  CAS  Google Scholar 

  • Lee HB, Peart TE (2000) Bisphenol A contamination in Canadian municipal and industrial wastewater and sludge samples. Water Qual Res J Can 35:283–298

    CAS  Google Scholar 

  • Leiknes T, Bolt H, Engmann M et al (2006) Assessment of membrane reactor design in the performance of a hybrid biofilm membrane bioreactor (BFMBR). Desalination 199:328–330

    Article  CAS  Google Scholar 

  • Li J, Jiang L, Liu X et al (2013) Adsorption and aerobic biodegradation of four selected endocrine disrupting chemicals in soil-water system. Int Biodeter Biodegr 76:3–7

    Article  CAS  Google Scholar 

  • Luo Y, Jiang Q, Ngo HH et al (2015) Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor–membrane bioreactor system. Bioresour Technol 191:355–359

    Article  CAS  Google Scholar 

  • Meesters RJW, Schroder HF (2002) Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Anal Chem 74:3566–3574

    Article  CAS  Google Scholar 

  • Melcer H, Klečka G (2011) Treatment of wastewaters containing bisphenol A: state of the science review. Water Environ Res 83:650–666

    Article  CAS  Google Scholar 

  • Miserez K, Philips S, Verstraete W (1999) New biology for advanced wastewater treatment. Water Sci Technol 40:137–144

    Article  CAS  Google Scholar 

  • Mohapatra DP, Brar SK, Tyagi RD et al (2010a) Degradation of endocrine disrupting bisphenol A during pre-treatment and biotransformation of wastewater sludge. Chem Eng J 163:273–283

    Article  CAS  Google Scholar 

  • Mohapatra DP, Brar SK, Tyagi RD et al (2010b) Physico-chemical pretreatment and biotransformation of wastewater and wastewater sludge—fate of bisphenol A. Chemosphere 78:923–941

    Article  CAS  Google Scholar 

  • Nakajima N, Teramoto T, Kasai F et al (2007) Glycosylation of bisphenol A by freshwater microalgae. Chemosphere 69:934–941

    Article  CAS  Google Scholar 

  • Nasu M, Goto M, Kato H et al (2001) Study on endocrine disrupting chemicals in wastewater treatment plants. Water Sci Technol 43:101–108

    Article  CAS  Google Scholar 

  • Nghiem LD, Tadkaew N, Sivakumar M (2009) Removal of trace organic contaminants by submerged membrane bioreactors. Desalination 236:127–134

    Article  CAS  Google Scholar 

  • Nie Y, Qiang Z, Zhang H et al (2012) Fate and seasonal variation of endocrine-disrupting chemicals in a sewage treatment plant with A/A/O process. Sep Purif Technol 84:9–15

    Article  CAS  Google Scholar 

  • Ogawa H, Kitamura H, Miyata N (2005) Biodegradation of endocrine disrupting chemicals in aerobic and anaerobic sludges. Jpn J Water Treat Biol 41:83–92

    Article  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90:2343–2353

    Article  CAS  Google Scholar 

  • Pham TTH, Brar SK, Tyagi RD et al (2009) Ultrasonication of WWS-consequences on biodegradability and flowbility. J Hazard Mater 163:2–13

    Article  CAS  Google Scholar 

  • Pothitou P, Voutsa D (2008) Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere 73:1716–1723

    Article  CAS  Google Scholar 

  • Press-Kristensen K, Lindblom E, Schmidt JE et al (2008) Examining the biodegradation of endocrine disrupting bisphenol A and nonylphenol in WWTPs. Water Sci Technol 57:1253–1256

    Article  CAS  Google Scholar 

  • Qiang Z, Dong H, Zhu B et al (2013) A comparison of various rural wastewater treatment processes for the removal of endocrine-disrupting chemicals (EDCs). Chemosphere 92:986–992

    Article  CAS  Google Scholar 

  • Ren YX, Nakano K, Nomura M et al (2007) Effects of bacterial activity on estrogen removal in nitrifying activated sludge. Water Res 41:3089–3096

    Article  CAS  Google Scholar 

  • Roh H, Subramanya N, Zhao F et al (2009) Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 77:1084–1089

    Article  CAS  Google Scholar 

  • Samaras VG, Stasinakis AS, Mamais D et al (2013) Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. J Hazard Mater 244–245:259–267

    Article  CAS  Google Scholar 

  • Sarmah AK, Northcott GL (2008) Laboratory degradation studies of four endocrine disruptors in two environmental media. Environ Toxicol Chem 27:819–827

    Article  CAS  Google Scholar 

  • Sasaki M, Maki JI, Oshiman KI et al (2005) Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 16:449–459

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry. Wiley, Hoboken

    Google Scholar 

  • Seyhi B, Drogui P, Buelna G et al (2011) Modeling of sorption of bisphenol A in sludge obtained from a membrane bioreactor process. Chem Eng J 172:61–67

    Article  CAS  Google Scholar 

  • Seyhi B, Drogui P, Buelna G et al (2012) Removal of bisphenol-A from spiked synthetic effluents using an immersed membrane activated sludge process. Sep Purif Technol 87:101–109

    Article  CAS  Google Scholar 

  • Shen G, Yu G, Cai ZX et al (2005) Development of an analytical method to determine phenolic endocrine disrupting chemicals in sewage and sludge by GUMS. Chin Sci Bull 50:2681–2687

    Article  CAS  Google Scholar 

  • Speitel GE, Segar RL (1995) Cometabolism in biofilm reactors. Water Sci Technol 31:215–225

    Article  CAS  Google Scholar 

  • Spivack J, Leib TK, Lobos JH (1994) Novel pathway for bacterial metabolism of bisphenol A. J Biol Chem 269:7323–7329

    CAS  Google Scholar 

  • Staples CA, Dorn PB, Klečka GM et al (1998) A review of the environmental fate, effects and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  • Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment—a mini review. Global NEST J 10:376–385

    Google Scholar 

  • Stasinakis AS, Petalas AV, Mamais D et al (2008a) Application of the OECD 301F respirometric test for the biodegradability assessment of various potential endocrine disrupting chemicals. Bioresour Technol 99:3458–3467

    Article  CAS  Google Scholar 

  • Stasinakis AS, Gatidou G, Mamais D et al (2008b) Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res 42:1796–1804

    Article  CAS  Google Scholar 

  • Stasinakis AS, Kordoutis CI, Tsiouma VC et al (2010) Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresour Technol 101:2090–2095

    Article  CAS  Google Scholar 

  • Stringfellow WT, Alvarez-Cohen L (1999) Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Water Res 33:2535–2544

    Article  CAS  Google Scholar 

  • Sun Q, Deng S, Huang J et al (2008) Contributors to estrogenic activity in wastewater from a large wastewater treatment plant in Beijing, China. Environ Toxicol Phar 25:20–26

    Article  CAS  Google Scholar 

  • Suzuki T, Nakagawa Y, Takano I et al (2004) Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environ Sci Technol 38:2389–2396

    Article  CAS  Google Scholar 

  • Tadkaew N, Hai FI, McDonald JA et al (2011) Removal of trace organics by MBR treatment: the role of molecular properties. Water Res 45:2439–2451

    Article  CAS  Google Scholar 

  • Toyoizumi T, Deguchi Y, Masuda S et al (2008) Genotoxicity and estrogenic activity of 3,30-dinitrobisphenol a in goldfish. Biosci Biotechnol Biochem 72:2118–2123

    Article  CAS  Google Scholar 

  • Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39:1289–1300

    Article  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD et al (2007) Bench-scale fermentation of Trichoderma viride on WWS: rheology, lytic enzymes and biocontrol agents. Enzyme Microb Technol 41:764–771

    Article  CAS  Google Scholar 

  • Verstraete W, Philips S (1998) Nitrification-denitrification processes and technologies in new context. Environ Pollut 102:717–726

    Article  CAS  Google Scholar 

  • Weltin D, Gehring M, Tennhardt L et al (2002) Occurrence and fate of bisphenol A during wastewater treatment in selected German sewage treatment plants. In: Proceedings of the 2002 American water works association conference, endocrine disruptors and the water industry, American water works association, Denver, Colorado, 18–20 April 2002

    Google Scholar 

  • West RJ, Goodwin PA, Klečka GM (2001) Assessment of the ready biodegradability of Bisphenol A. Bull Environ Toxicol Chem 67:106–112

    Article  CAS  Google Scholar 

  • Wintgens T, Gallenkemper M, Melin T (2004) Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse. Water Sci Technol 50:1–8

    Article  CAS  Google Scholar 

  • Wood PM (1990) Autotrophic and heterotrophic mechanisms for ammonia oxidation. Soil Use Manag 6:78–79

    Article  Google Scholar 

  • Xia S, Li J, Wang R (2008) Nitrogen removal performance and microbial community structure dynamics response to carbon-nitrogen ratio in a compact suspended carrier biofilm reactor. Ecol Eng 32:256–262

    Article  Google Scholar 

  • Xiangli Q, Zhenjia Z, Quingxuan C et al (2008) Nitrification characteristics of PEG immobilized activated sludge at high ammonia and COD loading rates. Desalination 222:340–347

    Article  CAS  Google Scholar 

  • Xie Y, Li H, Wang L et al (2011) Molecularly imprinted polymer microspheres enhanced biodegradation of Bisphenol A by acclimated activated sludge. Water Res 45:1189–1198

    Article  CAS  Google Scholar 

  • Yuan SY, Shiung LC, Chang BV (2002) Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. Bull Environ Contam Toxicol 69:66–73

    Article  CAS  Google Scholar 

  • Zhao J, Li Y, Zhang C et al (2008) Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater 155:305–311

    Article  CAS  Google Scholar 

  • Zhao G, Zhou L, Li Y et al (2009) Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor. J Hazard Mater 169:402–410

    Article  CAS  Google Scholar 

  • Zhou NA, Lutovsky AC, Andaker GL et al (2014) Kinetics modeling predicts bioaugmentation with Sphingomonad cultures as a viable technology for enhanced pharmaceutical and personal care products removal during wastewater treatment. Bioresour Technol 166:58–167

    Google Scholar 

  • Zielińska M, Cydzik-Kwiatkowska A, Bernat K et al (2014) Removal of bisphenol A (BPA) in a nitrifying system with immobilized biomass. Bioresour Technol 171:305–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena ZIELIŃSKA .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ZIELIŃSKA, M., WOJNOWSKA-BARYŁA, I., CYDZIK-KWIATKOWSKA, A. (2019). Biological Wastewater Treatment Technologies for BPA Removal. In: Bisphenol A Removal from Water and Wastewater. Springer, Cham. https://doi.org/10.1007/978-3-319-92361-1_5

Download citation

Publish with us

Policies and ethics