Skip to main content

Biomedical Signals

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Speech Technology ((BRIEFSSPEECHTECH))

Abstract

In our daily life, sensors are corporate in several devices and applications for a better life. Such sensors as the tactile sensors are included in the touch screens and the computers’ touch pads. The input of these sensors is from the environment that converted into an electrical signal for further processing in the sensor system. The sensor’s main role is to measure a specific quantity and create a signal for interpretation. The human bodies continuously communicate health information that reflects the status of the body organs and the overall health information. Such information is typically captured by physical devices that measure different types of information, such as measuring the brain activity, blood glucose, blood pressure, heart rate, nerve conduction, and so forth. According to these measurements, physicians decide the diagnosis and treatment decisions. Engineers are realizing new acquiring devices to measure noninvasively the different types of signals for further analysis using mathematical algorithms and formulae. This chapter includes classifications of the biosignals based on several principles. In addition, the different biosensors are highlighted including the role of the biopotential amplifier stage within the sensor system. Finally, the biomedical signal acquisition and processing phases are also included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marchionini, G. (1997). Information seeking in electronic environments (Vol. 9). New York: Cambridge University Press.

    Google Scholar 

  2. Yilmaz, T., Foster, R., & Hao, Y. (2010). Detecting vital signs with wearable wireless sensors. Sensors, 10(12), 10837–10862.

    Article  Google Scholar 

  3. Dey, N., & Ashour, A. S. (2018). Sources localization and DOAE techniques of moving multiple sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 23–34). Cham: Springer.

    Chapter  Google Scholar 

  4. Dey, N., & Ashour, A. S. (2018). Computing in medical image analysis. In Soft computing based medical image analysis (pp. 3–11).

    Chapter  Google Scholar 

  5. Elhayatmy, G., Dey, N., & Ashour, A. S. (2018). Internet of things based wireless body area network in healthcare. In Internet of things and big data analytics toward next-generation intelligence (pp. 3–20). Cham: Springer.

    Chapter  Google Scholar 

  6. Ghaderi, F. (2010). Signal processing techniques for extracting signals with periodic structure: Applications to biomedical signals. Cardiff University.

    Google Scholar 

  7. Odinaka, I. C. (2014). Identifying humans by the shape of their heartbeats and materials by their X-ray scattering profiles. Washington University in St. Louis.

    Google Scholar 

  8. Haraldsson, H., Edenbrandt, L., & Ohlsson, M. (2004). Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks. Artificial Intelligence in Medicine, 32(2), 127–136.

    Google Scholar 

  9. Dey, N., & Ashour, A. S. (2018). Applied examples and applications of localization and tracking problem of multiple speech sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 35–48). Cham: Springer.

    Chapter  Google Scholar 

  10. Jiminez Gonzalez, A. (2010). Antenatal foetal monitoring through abdominal phonogram recordings: A single-channel independent component approach (Doctoral dissertation, University of Southampton).

    Google Scholar 

  11. Dickhaus, H., & Heinrich, H. (1996). Classifying biosignals with wavelet networks [a method for noninvasive diagnosis]. IEEE Engineering in Medicine and Biology Magazine, 15(5), 103–111.

    Article  Google Scholar 

  12. Mar, T., Zaunseder, S., Martínez, J. P., Llamedo, M., & Poll, R. (2011). Optimization of ECG classification by means of feature selection. IEEE Transactions on Biomedical Engineering, 58(8), 2168–2177.

    Article  Google Scholar 

  13. Tavakolian, K., Nasrabadi, A. M., & Rezaei, S. (2004, May). Selecting better EEG channels for classification of mental tasks. In Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on (Vol. 3, pp. III–537). IEEE.

    Google Scholar 

  14. Arvaneh, M., Guan, C., Ang, K. K., & Quek, C. (2011). Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Transactions on Biomedical Engineering, 58(6), 1865–1873.

    Article  Google Scholar 

  15. Martínez-Vargas, J. D., Godino-Llorente, J. I., & Castellanos-Dominguez, G. (2012). Time–frequency based feature selection for discrimination of non-stationary biosignals. EURASIP Journal on Advances in Signal Processing, 2012(1), 219.

    Article  Google Scholar 

  16. Vidaurre, C., Sander, T. H., & Schlögl, A. (2011). BioSig: The free and open source software library for biomedical signal processing. Computational Intelligence and Neuroscience, 2011.

    Google Scholar 

  17. Zhang, Z., Song, Y., Cui, H., Wu, J., Schwartz, F., & Qi, H. (2017). Topological analysis and Gaussian decision tree: Effective representation and classification of biosignals of small sample size. IEEE Transactions on Biomedical Engineering, 64(9), 2288–2299.

    Article  Google Scholar 

  18. Georgieva, O., Milanov, S., & Georgieva, P. (2014). Unsupervised EEG biosignal discrimination. International Journal of Reasoning-based Intelligent Systems, 6(3–4), 118–125.

    Article  Google Scholar 

  19. Cuesta-Frau, D., Pérez-Cortes, J. C., Andreu-García, G., & Novák, D. (2002). Feature extraction methods applied to the clustering of electrocardiographic signals. A comparative study. In Pattern Recognition, 2002. Proceedings. 16th International Conference on (Vol. 3, pp. 961–964). IEEE.

    Google Scholar 

  20. Kim, J., Mastnik, S., & André, E. (2008, January). EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on Intelligent user interfaces (pp. 30–39). ACM.

    Google Scholar 

  21. Prutchi, D., & Norris, M. (2005). Design and development of medical electronic instrumentation: A practical perspective of the design, construction, and test of medical devices. Hoboken: Wiley.

    Google Scholar 

  22. Kramme, R., Hoffmann, K. P., & Pozos, R. S. (Eds.). (2011). Springer handbook of medical technology. New York: Springer Science & Business Media.

    Google Scholar 

  23. Bronzino, J. D. (2006). Biomedical signals: Origin and dynamic characteristics; frequency-domain analysis. In Medical devices and systems (pp. 27–48). CRC Press.

    Google Scholar 

  24. Bronzino, J. D. (Ed.). (2006). Medical devices and systems. Boca Raton: CRC Press.

    Google Scholar 

  25. Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psychophysiology. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (Vol. 3, pp. 182–210). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  26. Casaccia, S., Sirevaag, E. J., Richter, E., O'Sullivan, J. A., Scalise, L., & Rohrbaugh, J. W. (2014, May). Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing. In AIP Conference Proceedings (Vol. 1600, No. 1, pp. 298–312). AIP.

    Google Scholar 

  27. Soleymani, S., Borzage, M., Noori, S., & Seri, I. (2012). Neonatal hemodynamics: Monitoring, data acquisition and analysis. Expert Review of Medical Devices, 9(5), 501–511.

    Article  Google Scholar 

  28. Kaniusas, E. (2015). Biomedical signals and sensors II. Berlin\Heidelberg: Springer.

    Book  Google Scholar 

  29. Liu, Y., Norton, J. J., Qazi, R., Zou, Z., Ammann, K. R., Liu, H., Yan, L., Tran, P. L., Jang, K., Lee, J. W., Zhang, D., Kilian, K. A., Jung, S. H., Bretl, T., Xiao, J., Slepian, M. J., Huang, Y., Jeong, J., & Rogers, J. A. (2016). Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2(11), e1601185.

    Article  Google Scholar 

  30. Alamdari, N. T. (2016). A morphological approach to identify respiratory phases of seismocardiogram. The University of North Dakota.

    Google Scholar 

  31. Fay, C. (2013). Investigation into strategies for harvesting chemical based information using digital imaging and infra-red sensors for environmental and health applications (Doctoral dissertation, Dublin City University).

    Google Scholar 

  32. Kaniusas, E. (2012). Fundamentals of biosignals. In Biomedical signals and sensors I (pp. 1–26). Berlin\Heidelberg: Springer.

    Chapter  Google Scholar 

  33. Safieddine, D., Kachenoura, A., Albera, L., Birot, G., Karfoul, A., Pasnicu, A., Biraben, A., Wendling, F., Senhadji, L., & Merlet, I. (2012). Removal of muscle artifact from EEG data: Comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP Journal on Advances in Signal Processing, 2012(1), 127.

    Google Scholar 

  34. Sontakay, R. (2018). Real-time signal analysis of the ECG signal for generating an artificial pulse for continuous flow blood pumps using virtual instrumentation (Doctoral dissertation, California State University, Northridge).

    Google Scholar 

  35. Dey, N., & Ashour, A. S. (2017). Direction of arrival estimation and localization of multi-speech sources. Springer Science and Business Media.

    Google Scholar 

  36. Ashour, A. S., Dey, N., & Mohamed, W. S. (2016). Abdominal imaging in clinical applications: Computer aided diagnosis approaches. In Medical imaging in clinical applications (pp. 3–17). Cham: Springer.

    Chapter  Google Scholar 

  37. Dey, N., Hassanien, A. E., Bhatt, C., Ashour, A., & Satapathy, S. C. (Eds.). (2018). Internet of things and big data analytics toward next-generation intelligence. Cham: Springer.

    Google Scholar 

  38. Gospodinova, E., Gospodinov, M., Dey, N., Domuschiev, I., Ashour, A. S., Balas, S. V., & Olariu, T. (2016, August). Specialized software system for heart rate variability analysis: An implementation of nonlinear graphical methods. In International workshop soft computing applications (pp. 367–374). Cham: Springer.

    Google Scholar 

  39. Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical and biological engineering and computing, 44(12), 1031–1051.

    Google Scholar 

  40. Soni, Y., Jain, J. K., Meena, R. S., & Maheshwari, R. (2017, May). HRV analysis of young adults in pre-meal and post-meal stage. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE International Conference on (pp. 1125–1129). IEEE.

    Google Scholar 

  41. Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747–1763.

    Article  Google Scholar 

  42. Scheller, F., Schubert, F., Pfeiffer, D., Hintsche, R., Dransfeld, I., Renneberg, R., Wollenberger, U., Riedel, K., Pavlova, M., Kuhn, M., Muller, H. G., Tan, P., Hoffmann, W., & Movitz, W. (1989). Research and development of biosensors. A review. Analyst, 114(6), 653–662.

    Article  Google Scholar 

  43. Kriz, D., Ramström, O., & Mosbach, K. (1997). Peer reviewed: Molecular imprinting: New possibilities for sensor technology. Analytical Chemistry, 69(11), 345A–349A.

    Article  Google Scholar 

  44. Deisingh, A. K., & Thompson, M. (2004). Biosensors for the detection of bacteria. Canadian Journal of Microbiology, 50(2), 69–77.

    Article  Google Scholar 

  45. Shah, J., & Wilkins, E. (2003). Electrochemical biosensors for detection of biological warfare agents. Electroanalysis, 15(3), 157–167.

    Article  Google Scholar 

  46. Rodriguez-Mozaz, S., Marco, M. P., de Alda, M. J. L., & Barceló, D. (2004). Biosensors for environmental monitoring of endocrine disruptors: A review article. Analytical and Bioanalytical Chemistry, 378(3), 588–598.

    Article  Google Scholar 

  47. Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112(5), 2739–2779.

    Article  Google Scholar 

  48. Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning A, 34(8), 1443–1458.

    Article  Google Scholar 

  49. Mac Ruairí, R., Keane, M. T., & Coleman, G. (2008, August). A wireless sensor network application requirements taxonomy. In Sensor Technologies and Applications, 2008. SENSORCOMM'08. Second International Conference on (pp. 209–216). IEEE.

    Google Scholar 

  50. Gnawali, O., Yarvis, M., Heidemann, J., & Govindan, R. (2004, October). Interaction of retransmission, blacklisting, and routing metrics for reliability in sensor network routing. In Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on (pp. 34–43). IEEE.

    Google Scholar 

  51. Boccippio, D. J., Koshak, W., Blakeslee, R., Driscoll, K., Mach, D., Buechler, D., Boeck, W., Christian, H. J., & Goodman, S. J. (2000). The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. Journal of Atmospheric and Oceanic Technology, 17(4), 441–458.

    Article  Google Scholar 

  52. Rothrock, R. L., & Drummond, O. E. (2000, July). Performance metrics for multiple-sensor multiple-target tracking. In Signal and Data Processing of Small Targets 2000 (Vol. 4048, pp. 521–532). International Society for Optics and Photonics.

    Google Scholar 

  53. Nagel, J. H. (2000). Biopotential amplifiers. In J. D. Bronzino (Ed.), Biomedical engineering hand book (2nd ed., pp. 70–71). New York: Springer-Verlag.

    Google Scholar 

  54. Zhou, G., Wang, Y., & Cui, L. (2015). Biomedical sensor, device and measurement systems. In Advances in Bioengineering. InTech.

    Google Scholar 

  55. Denison, T. J., Jensen, R. M., & Santa, W. A. (2009). U.S. Patent Application No. 12/237,868.

    Google Scholar 

  56. Ljubisavljevic, M., & Popovic, M. B. (1999). Data acquisition, processing and storage. In Modern techniques in neuroscience research (pp. 1277–1311). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  57. Schreiner, S. (2014). Medical instruments and devices. In Medical devices and human engineering.

    Google Scholar 

  58. Zikov, T., Bibian, S., & Modarres, M. (2017). U.S. Patent No. 9,554,721. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  59. Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso.

    Google Scholar 

  60. Cavazzana, L. (2012). Integrating an EMG signal classifier and a hand rehabilitation device: Early signal recognition and real time performances.

    Google Scholar 

  61. Rodrigues, F. M. S. (2015). Establishing a framework for the development of multimodal virtual reality interfaces with applicability in education and clinical practice (Doctoral dissertation).

    Google Scholar 

  62. Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso.

    Google Scholar 

  63. Kaniusas, E. (2015). Sensing by acoustic biosignals. In Biomedical signals and sensors II (pp. 1–90). Berlin, Heidelberg: Springer.

    Google Scholar 

  64. Bridger, K., Cooke, A. V., Kuhn, P. M., Lutian, J. J., Passaro, E. J., Sewell, J. M., Waskey, T. V., & Rubin, G. R. (2002). U.S. Patent No. 6,491,647. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  65. Sörnmo, L., & Laguna, P. (2005). Bioelectrical signal processing in cardiac and neurological applications (Vol. 8). London: Academic Press.

    Google Scholar 

  66. Kaniusas, E. (2007). Acoustical signals of biomechanical systems. In C. T. Leondes (Ed.), Biomechanical systems technology: Volume 4: General anatomy (pp. 1–44). Singapore: World Scientific Publishing.

    Google Scholar 

  67. Shimizu, K., Kawamura, K., & Yamamoto, K. (2000). Practical considerations for a system to locate moving persons. Biotelemetry, 15, 639–645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, N., Ashour, A.S., Mohamed, W.S., Nguyen, N.G. (2019). Biomedical Signals. In: Acoustic Sensors for Biomedical Applications. SpringerBriefs in Speech Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92225-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92225-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92224-9

  • Online ISBN: 978-3-319-92225-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics