Skip to main content

Introduction

  • Chapter
  • First Online:
  • 942 Accesses

Part of the book series: SpringerBriefs in Speech Technology ((BRIEFSSPEECHTECH))

Abstract

The interface between the physical sciences, electronics, and life sciences becomes inhabited by several researchers to fulfill the needs of the medical/life scientist in the biomedical community. Based on the chemical, biological, and physical principles, the instruments improvement burgeoned. Conversely, the analytical instruments require several types of sensors extending from elementary devices for temperature and flow measurements, nonionizing and ionizing radiation to biological, chemical, ultrasound, and acoustic sensing transducers [1–9].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Campajola, L., & Di Capua, F. (2016). Applications of accelerators and radiation sources in the field of space research and industry. Topics in Current Chemistry, 374(6), 84.

    Article  Google Scholar 

  2. Duan, X., Huang, Y., Cui, Y., Wang, J., & Lieber, C. M. (2001). Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 409(6816), 66.

    Google Scholar 

  3. Hughes, P. G., Votava, O., West, M. B., Zhang, F., & Kable, S. H. (2005). Pulsed oscillating mass spectrometer: A miniaturized type of time-of-flight mass spectrometer. Analytical Chemistry, 77(14), 4448–4452.

    Article  Google Scholar 

  4. Rivetti, A. (2015). CMOS: Front-end electronics for radiation sensors (Vol. 42). Boca Raton: CRC Press.

    Google Scholar 

  5. Chatterjee, S., Hore, S., Dey, N., Chakraborty, S., & Ashour, A. S. (2017). Dengue fever classification using gene expression data: A PSO based artificial neural network approach. In Proceedings of the 5th international conference on frontiers in intelligent computing: Theory and applications (pp. 331–341). Singapore: Springer.

    Chapter  Google Scholar 

  6. Dey, N., Ashour, A. S., Shi, F., & Sherratt, R. S. (2017). Wireless capsule gastrointestinal endoscopy: Direction-of-arrival estimation based localization survey. IEEE Reviews in Biomedical Engineering, 10, 2–11.

    Article  Google Scholar 

  7. Ashour, A. S., & Dey, N. (2016). Adaptive window bandwidth selection for direction of arrival estimation of uniform velocity moving targets based relative intersection confidence interval technique. Ain Shams Engineering Journal.

    Google Scholar 

  8. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. New York: Cengage Learning.

    Google Scholar 

  9. Franssila, S. (2010). Introduction to microfabrication. Chichester: Wiley.

    Book  Google Scholar 

  10. OKOYE, G. C. (2008). Biomedical technology and health human life. Biomedical Engineering, 1, 12.

    Google Scholar 

  11. Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: A review. Smart Materials and Structures, 23(5), 053001.

    Article  Google Scholar 

  12. Sun, Y., & Yu, X. B. (2016). Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sensors Journal, 16(9), 2832–2853.

    Article  Google Scholar 

  13. Korotcenkov, G. (Ed.). (2011). Chemical sensors: Comprehensive sensor technologies volume 6: Chemical sensors applications (Vol. 6). New York: Momentum Press.

    Google Scholar 

  14. Gospodinova, E., Gospodinov, M., Dey, N., Domuschiev, I., Ashour, A. S., & Sifaki-Pistolla, D. (2015). Analysis of heart rate variability by applying nonlinear methods with different approaches for graphical representation of results. Analysis, 6(8).

    Google Scholar 

  15. RajaRajeswari, P., Raju, S. V., Ashour, A. S., Dey, N., & Balas, V. E. (2016, June). Active site cavities identification of amyloid beta precursor protein: Alzheimer disease study. In Intelligent Engineering Systems (INES), 2016 IEEE 20th Jubilee International Conference on (pp. 319–324). IEEE.

    Google Scholar 

  16. Kamal, M. S., Chowdhury, L., Khan, M. I., Ashour, A. S., Tavares, J. M. R., & Dey, N. (2017). Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images. Computational Biology and Chemistry, 68, 231–244.

    Article  Google Scholar 

  17. Liu, K. K., Wu, R. G., Chuang, Y. J., Khoo, H. S., Huang, S. H., & Tseng, F. G. (2010). Microfluidic systems for biosensing. Sensors, 10(7), 6623–6661.

    Article  Google Scholar 

  18. Nichols, S. P., Koh, A., Storm, W. L., Shin, J. H., & Schoenfisch, M. H. (2013). Biocompatible materials for continuous glucose monitoring devices. Chemical Reviews, 113(4), 2528–2549.

    Article  Google Scholar 

  19. Eggins, B. R. (2008). Chemical sensors and biosensors (Vol. 28). Chichester: Wiley.

    Google Scholar 

  20. Graf, R. F. (1999). Modern dictionary of electronics. Oxford: Newnes.

    Google Scholar 

  21. De Marcellis, A., & Ferri, G. (2011). Analog circuits and systems for voltage-mode and current-mode sensor interfacing applications. Springer Science & Business Media.

    Google Scholar 

  22. Karaa, W. B. A., Mannai, M., Dey, N., Ashour, A. S., & Olariu, I. (2016, August). Gene-disease-food relation extraction from biomedical database. In International workshop soft computing applications (pp. 394–407). Cham: Springer.

    Google Scholar 

  23. Chatterjee, S., Dey, N., Shi, F., Ashour, A. S., Fong, S. J., & Sen, S. (2017). Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data. Medical & Biological Engineering & Computing, 1–12.

    Google Scholar 

  24. Holford, S. K. (1981). Discontinuous adventitious lung sounds: measurement, classification, and modeling.

    Google Scholar 

  25. Collins, S. A. (1990). Sensors for structural control applications using piezoelectric polymer film (Doctoral dissertation, Massachusetts Institute of Technology).

    Google Scholar 

  26. Hebra, A. J. (2010). Acoustics. In The physics of metrology (pp. 271–299). Vienna: Springer.

    Chapter  Google Scholar 

  27. Dufresne, J. R., Carim, H. M., & Drummond, T. E. (2013). U.S. Patent No. 8,548,174. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  28. Semmlow, J. L., & Griffel, B. (2014). Biosignal and medical image processing. Boca Raton: CRC press.

    Google Scholar 

  29. Patel, H. K. (2016). The electronic nose: Artificial olfaction technology. Ahmedabad: Springer.

    Google Scholar 

  30. Dey, N., & Ashour, A. S. (2018). Microphone array principles. In Direction of arrival estimation and localization of multi-speech sources (pp. 5–22). Cham: Springer.

    Chapter  Google Scholar 

  31. Dey, N., & Ashour, A. S. (2018). Challenges and future perspectives in speech-sources direction of arrival estimation and localization. In Direction of arrival estimation and localization of multi-speech sources (pp. 49–52). Cham: Springer.

    Chapter  Google Scholar 

  32. Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Tavares, J. M. R. (2018). Medical cyber-physical systems: A survey. Journal of Medical Systems, 42(4), 74.

    Article  Google Scholar 

  33. Dey, N., & Ashour, A. S. (2017). Ambient intelligence in healthcare: A state-of-the-art. Global Journal of Computer Science and Technology.

    Google Scholar 

  34. Kumar, L. A., & Vigneswaran, C. (2015). Electronics in textiles and clothing: Design, products and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  35. Nihonyanagi, S., Eftekhari-Bafrooei, A., Hines, J., & Borguet, E. (2008). Self-assembled monolayer compatible with metal surface acoustic wave devices on lithium niobate. Langmuir, 24(9), 5161–5165.

    Article  Google Scholar 

  36. Fu, Y. Q., Luo, J., Flewitt, A., Walton, A., Desmulliez, M., & Milne, W. (2016). Piezoelectric zinc oxide and aluminum nitride films for microfluidic and biosensing applications. Biological and Biomedical Coatings Handbook Applications, 335.

    Google Scholar 

  37. Caliendo, C., Contini, G., Fratoddi, I., Irrera, S., Pertici, P., Scavia, G., & Russo, M. V. (2007). Nanostructured organometallic polymer and palladium/polymer hybrid: surface investigation and sensitivity to relative humidity and hydrogen in surface acoustic wave sensors. Nanotechnology, 18(12), 125504.

    Google Scholar 

  38. Campifelli, A., Bartic, C., Friedt, J. M., De Keersmaecker, K., Laureyn, W., Francis, L., Frederix, F., Reekmans, G., Angelova, A., Suls, J., Bonroy, K., De Palma, R., Cheng, Z., & Borghs G. (2003, September). Development of microelectronic based biosensors. In Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003 (pp. 505–512). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, N., Ashour, A.S., Mohamed, W.S., Nguyen, N.G. (2019). Introduction. In: Acoustic Sensors for Biomedical Applications. SpringerBriefs in Speech Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92225-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92225-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92224-9

  • Online ISBN: 978-3-319-92225-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics