Skip to main content

Basic Aspects of Cardiac Remodelling

  • Chapter
  • First Online:
Book cover Right Heart Pathology

Abstract

It has been defined by Conn and colleagues in 2000 that “Cardiac remodelling may be characterized as genome expression, molecular, cellular and interstitial changes that are manifested clinically as changes in size, shape and function of the heart after cardiac injury”, associated with ventricular dysfunction, malignant arrhythmias and poor prognosis. Conversely, the various definitions of cardiac remodelling stress on common molecular, biochemical, and mechanical pathways. Although the right ventricle and left ventricle show significant distinctions in embryology, form, and function, they have many similar findings when they adjust to damaging loading or when they fail. Having a number of key differentiations in their molecular response to failure this offer a future platform for right ventricle for a particular therapeutic intervention. It has been suggested by Friedberg and Redington in 2014 that “Focus on the molecular pathways specific to the failing right ventricle, and targeting the interactions between both ventricles may guide to successful treatments for the right ventricle and left ventricle failure”. A shortly review is made with updated information for all factors that cause and affect cardiac remodelling process, especially in case of right heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hochman JS, Bulkley BH. Expansion of acute myocardial infarction: an experimental study. Circulation. 1982;65(7):1446–50.

    Article  PubMed  CAS  Google Scholar 

  2. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res. 1985;57(1):84–95.

    Article  PubMed  CAS  Google Scholar 

  3. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.

    Article  PubMed  CAS  Google Scholar 

  4. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.

    Article  CAS  PubMed  Google Scholar 

  5. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79(1):215–62.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts CS, Maclean D, Maroko P, Kloner RA. Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol. 1984;54(3):407–10.

    Article  PubMed  CAS  Google Scholar 

  7. Swynghedauw B. Remodeling of the heart in chronic pressure overload. Basic Res Cardiol. 1991;86(Suppl 1):99–105.

    PubMed  CAS  Google Scholar 

  8. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88(2):389–419. https://doi.org/10.1152/physrev.00017.2007.

    Article  PubMed  CAS  Google Scholar 

  9. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600. https://doi.org/10.1038/nrm1983.

    Article  PubMed  CAS  Google Scholar 

  10. Dorn GW, Robbins J, Sugden PH. Phenotyping hypertrophy: eschew obfuscation. Circ Res. 2003;92(11):1171–5. https://doi.org/10.1161/01.RES.0000077012.11088.BC.

    Article  PubMed  CAS  Google Scholar 

  11. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358(13):1370–80. https://doi.org/10.1056/NEJMra072139.

    Article  PubMed  CAS  Google Scholar 

  12. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–67. https://doi.org/10.1016/S0140-6736(06)68074-4.

    Article  PubMed  Google Scholar 

  13. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31. https://doi.org/10.1161/CIRCULATIONAHA.107.653584.

    Article  PubMed  Google Scholar 

  14. D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    Article  PubMed  CAS  Google Scholar 

  15. McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation. 2006;114(13):1417–31. https://doi.org/10.1161/CIRCULATIONAHA.104.503540.

    Article  PubMed  Google Scholar 

  16. Machuca TN, de Perrot M. Mechanical support for the failing right ventricle in patients with precapillary pulmonary hypertension. Circulation. 2015;132(6):526–36. https://doi.org/10.1161/CIRCULATIONAHA.114.012593.

    Article  PubMed  Google Scholar 

  17. Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA. Right ventricular myocardium derives from the anterior heart field. Circ Res. 2004;95(3):261–8. https://doi.org/10.1161/01.RES.0000136815.73623.BE.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas T, Yamagishi H, Overbeek PA, Olson EN, Srivastava D. The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness. Dev Biol. 1998;196(2):228–36.

    Article  PubMed  CAS  Google Scholar 

  19. Kondo RP, Dederko DA, Teutsch C, Chrast J, Catalucci D, Chien KR, Giles WR. Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. J Physiol. 2006;571(Pt 1):131–46.

    Article  PubMed  CAS  Google Scholar 

  20. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129(9):1033–44. https://doi.org/10.1161/CIRCULATIONAHA.113.001375.

    Article  PubMed  Google Scholar 

  21. Iacobazzi D, Suleiman MS, Ghorbel M, George SJ, Caputo M, Tulloh RM. Cellular and molecular basis of RV hypertrophy in congenital heart disease. Heart. 2016;102(1):12–7. https://doi.org/10.1136/heartjnl-2015-308348.

    Article  PubMed  CAS  Google Scholar 

  22. Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, Roden RL, Dutcher DL, Robertson AD, Voelkel NF, Badesch DB, Groves BM, Gilbert EM, Bristow MR. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest. 1997;100(9):2315–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bakerman PR, Stenmark KR, Fisher JH. Alpha-skeletal actin messenger RNA increases in acute right ventricular hypertrophy. Am J Phys. 1990;258(4 Pt 1):L173–8.

    CAS  Google Scholar 

  24. Bartelds B, Borgdorff MA, Smit-van Oosten A, Takens J, Boersma B, Nederhoff MG, Elzenga NJ, van Gilst WH, De Windt LJ, Berger RM. Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail. 2011;13(12):1275–82. https://doi.org/10.1093/eurjhf/hfr134.

    Article  PubMed  CAS  Google Scholar 

  25. Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.

    Article  PubMed  CAS  Google Scholar 

  26. Urashima T, Zhao M, Wagner R, Fajardo G, Farahani S, Quertermous T, Bernstein D. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol. 2008;295(3):H1351–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ozhan G, Weidinger G. Wnt/β-catenin signaling in heart regeneration. Cell Regen. 2015;4(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woodgett JR. Regulation and functions of the glycogen synthase kinase-3 subfamily. Semin Cancer Biol. 1994;5(4):269–75.

    PubMed  CAS  Google Scholar 

  29. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107(2):519–27.

    Article  PubMed  CAS  Google Scholar 

  30. Nagendran J, Gurtu V, Fu DZ, Dyck JR, Haromy A, Ross DB, Rebeyka IM, Michelakis ED. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg. 2008;136(1):168–78. 178.e1–3

    Article  PubMed  Google Scholar 

  31. Zornoff LA, Paiva SA, Duarte DR, Spadaro J. Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol. 2009;92(2):150–64.

    Article  PubMed  Google Scholar 

  32. Mesquita ET, Montera MW, de Souza Neto JD, Bernardez-Pereira S, Freitas AF Jr, Volschan A, Biolo A, Nunes Filho AC, Chagas AC, Jorge AJ, Almeida DR, Arteaga E, dos Santos Junior EG, Fernandes F, Ramires FJ, Bacal F, Tarasoutshi F, Feitosa GS, Villacorta H Jr, Ferreira JF, Vieira JM Jr, Moura LA, Pires LJ, Correia LC, Rohde LE, Rivas M, Moreira Mda C, Kaiser SE, Ferreira SM, Martins SM, Martinez TL. Biomarkers in cardiology--part 1--in heart failure and specific cardiomyopathies. Arq Bras Cardiol. 2014;103(6):451–9.

    Google Scholar 

  33. Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. 2016;106(1):62–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Anand IS, Florea VG, Solomon SD, Konstam MA, Udelson JE. Noninvasive assessment of left ventricular remodeling: concepts, techniques, and implications for clinical trials. J Card Fail. 2002;8(6 Suppl):S452–64.

    Article  PubMed  Google Scholar 

  35. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sabbah HN, Goldstein S. Ventricular remodelling: consequences and therapy. Eur Heart J. 1993;14(Suppl C):24–9.

    Article  PubMed  Google Scholar 

  37. Henning RJ. Effects of positive end-expiratory pressure on the right ventricle. J Appl Physiol. 1986;61(3):819–26.

    Article  PubMed  CAS  Google Scholar 

  38. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med. 1994;150(3):833–52.

    Article  PubMed  CAS  Google Scholar 

  39. Gaudron P, Eilles C, Kugler I, Ertl G. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation. 1993;87(3):755–63.

    Article  PubMed  CAS  Google Scholar 

  40. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76(1):44–51.

    Article  PubMed  CAS  Google Scholar 

  41. Rumberger JA, Behrenbeck T, Breen JR, Reed JE, Gersh BJ. Nonparallel changes in global left ventricular chamber volume and muscle mass during the first year after transmural myocardial infarction in humans. J Am Coll Cardiol. 1993;21(3):673–82.

    Article  PubMed  CAS  Google Scholar 

  42. Bussani R, Abbate A, Biondi-Zoccai GG, Dobrina A, Leone AM, Camilot D, Di Marino MP, Baldi F, Silvestri F, Biasucci LM, Baldi A. Right ventricular dilatation after left ventricular acute myocardial infarction is predictive of extremely high peri-infarctual apoptosis at postmortem examination in humans. J Clin Pathol. 2003;56(9):672–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Oakley C. Importance of right ventricular function in congestive heart failure. Am J Cardiol. 1988;62(2):14A–9A.

    Article  PubMed  CAS  Google Scholar 

  44. Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25(5):1143–53.

    Article  PubMed  Google Scholar 

  45. Liu L, Eisen HJ. Epidemiology of heart failure and scope of the problem. Cardiol Clin. 2014;32(1):1–8. vii

    Article  PubMed  CAS  Google Scholar 

  46. Pimentel M, Zimerman LI, Rohde LE. Stratification of the risk of sudden death in nonischemic heart failure. Arq Bras Cardiol. 2014;103(4):348–57.

    PubMed  PubMed Central  Google Scholar 

  47. Braunwald E. Heart failure. JACC Heart Fail. 2013;1(1):1–20.

    Article  PubMed  Google Scholar 

  48. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986;74(4):693–702.

    Article  PubMed  CAS  Google Scholar 

  49. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol. 1991;68(14):7D–16D.

    Article  PubMed  CAS  Google Scholar 

  50. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Douglas PS, Morrow R, Ioli A, Reichek N. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1989;13(2):311–5.

    Article  PubMed  CAS  Google Scholar 

  52. Mitchell GF, Lamas GA, Vaughan DE, Pfeffer MA. Left ventricular remodeling in the year after first anterior myocardial infarction: a quantitative analysis of contractile segment lengths and ventricular shape. J Am Coll Cardiol. 1992;19(6):1136–44.

    Article  PubMed  CAS  Google Scholar 

  53. Weisman HF, Bush DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after acute myocardial infarction: a study in the rat model. J Am Coll Cardiol. 1985;5(6):1355–62.

    Article  PubMed  CAS  Google Scholar 

  54. Jugdutt BI. Effect of captopril and enalapril on left ventricular geometry, function and collagen during healing after anterior and inferior myocardial infarction in a dog model. J Am Coll Cardiol. 1995;25(7):1718–25.

    Article  PubMed  CAS  Google Scholar 

  55. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996;148(1):141–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest. 1996;97(12):2891–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med. 1997;336(16):1131–41.

    Article  PubMed  CAS  Google Scholar 

  58. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II. Circ Res. 1991;69(5):1185–95.

    Article  PubMed  CAS  Google Scholar 

  59. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation. 1993;88(6):2849–61.

    Article  PubMed  CAS  Google Scholar 

  60. Anderson KR, Sutton MG, Lie JT. Histopathological types of cardiac fibrosis in myocardial disease. J Pathol. 1979;128(2):79–85.

    Article  PubMed  CAS  Google Scholar 

  61. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation. 1990;82(4):1387–401.

    Article  PubMed  CAS  Google Scholar 

  62. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135(3):794–804.

    Article  PubMed  CAS  Google Scholar 

  63. Modesti PA, Vanni S, Bertolozzi I, Cecioni I, Lumachi C, Perna AM, Boddi M, Gensini GF. Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension. 2004;43:101–8.

    Article  PubMed  CAS  Google Scholar 

  64. Colucci WS, Elkayam U, Horton DP, Abraham WT, Bourge RC, Johnson AD, Wagoner LE, Givertz MM, Liang CS, Neibaur M, Haught WH, LeJemtel TH. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. Engl J Med. 2000;343(4):246–53.

    Article  CAS  Google Scholar 

  65. Raizada V, Thakore K, Luo W, McGuire PG. Cardiac chamber-specific alterations of ANP and BNP expression with advancing age and with systemic hypertension. Mol Cell Biochem. 2001;216(1-2):137–40.

    Article  PubMed  CAS  Google Scholar 

  66. Reddy S, Zhao M, DQ H, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, JC W, Bernstein D. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics. 2012;44:562–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang GY, McCloskey DT, Turcato S, Swigart PM, Simpson PC, Baker AJ. Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol Heart Circ Physiol. 2006;291:H2013–7.

    Article  PubMed  CAS  Google Scholar 

  68. Irlbeck M, Muhling O, Iwai T, Zimmer HG. Different response of the rat left and right heart to norepinephrine. Cardiovasc Res. 1996;31:157–62.

    Article  PubMed  CAS  Google Scholar 

  69. Michaels AD, Chatterjee K, De Marco T. Effects of intravenous nesiritide on pulmonary vascular hemodynamics in pulmonary hypertension. J Card Fail. 2005;11(6):425–31.

    Article  PubMed  CAS  Google Scholar 

  70. Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med. 2010;88(10):1011–20.

    Article  PubMed  CAS  Google Scholar 

  71. Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B, Gao Y, Dumur CI, Fawcett P, Voelkel NF, Natarajan R. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Klinger JR, Thaker S, Houtchens J, Preston IR, Hill NS, Farber HW. Pulmonary hemodynamic responses to brain natriuretic peptide and sildenafil in patients with pulmonary arterial hypertension. Chest. 2006;129(2):417–25.

    Article  PubMed  CAS  Google Scholar 

  73. Kirk JA, Cingolani OH. Thrombospondins in the transition from myocardial infarction to heart failure. J Mol Cell Cardiol. 2016;90:102–10.

    Article  PubMed  CAS  Google Scholar 

  74. Geva T, Powell AJ, Crawford EC, Chung T, Colan SD. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation. 1998;98(4):339–45.

    Article  PubMed  CAS  Google Scholar 

  75. Rouleau JL, Paradis P, Shenasa H, Juneau C. Faster time to peak tension and velocity of shortening in right versus left ventricular trabeculae and papillary muscles of dogs. Circ Res. 1986;59(5):556–61.

    Article  PubMed  CAS  Google Scholar 

  76. Zak R. Cell proliferation during cardiac growth. Am J Cardiol. 1973;31(2):211–9.

    Article  PubMed  CAS  Google Scholar 

  77. Vanhoutte PM. Endothelium and control of vascular function. State of the art lecture. Hypertension. 1989;13(6 Pt 2):658–67.

    Article  PubMed  CAS  Google Scholar 

  78. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83(6):1849–65.

    Article  PubMed  CAS  Google Scholar 

  79. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013;10(1):15–26.

    Article  PubMed  CAS  Google Scholar 

  80. Owens GK. Growth response of aortic smooth muscle cells in hypertension. In: Lee RMKW, editor. Blood vessel changes in hypertension: structure and function. Boca Raton: CRC Press; 1989. p. 45–63.42.

    Google Scholar 

  81. Weber KT, Clark WA, Janicki JS, Shroff SG. Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium. J Cardiovasc Pharmacol. 1987;10(Suppl 6):S37–50.

    Article  PubMed  Google Scholar 

  82. Olson EN. A decade of discoveries in cardiac biology. Nat Med. 2004;10(5):467–74.

    Article  PubMed  CAS  Google Scholar 

  83. MacLellan WR, Schneider MD. Genetic dissection of cardiac growth control pathways. Annu Rev Physiol. 2000;62:289–319.

    Article  PubMed  CAS  Google Scholar 

  84. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109(13):1580–9.

    Article  PubMed  Google Scholar 

  85. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol. 2007;34(4):255–62.

    Article  PubMed  CAS  Google Scholar 

  86. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Phys. 1997;272(5 Pt 2):H2313–9.

    CAS  Google Scholar 

  87. MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res. 1997;81(2):137–44.

    Article  PubMed  CAS  Google Scholar 

  88. Frangogiannis NG. Matricellular proteins in cardiac adaptation and disease. Physiol Rev. 2012;92(2):635–88.

    Article  PubMed  CAS  Google Scholar 

  89. Bornstein P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol. 1995;130(3):503–6.

    Article  PubMed  CAS  Google Scholar 

  90. Bradshaw AD. The role of secreted protein acidic and rich in cysteine (SPARC) in cardiac repair and fibrosis: does expression of SPARC by macrophages influence outcomes? J Mol Cell Cardiol. 2016;93:156–61.

    Article  PubMed  CAS  Google Scholar 

  91. Francis GS, McDonald KM. Left ventricular hypertrophy: an initial response to myocardial injury. Am J Cardiol. 1992;69(18):3G–7G. discussion 7G–9G

    Article  PubMed  CAS  Google Scholar 

  92. Sharma K, Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bittel DC, Butler MG, Kibiryeva N, Marshall JA, Chen J, Lofland GK, O’Brien JE Jr. Gene expression in cardiac tissues from infants with idiopathic conotruncal defects. BMC Med Genet. 2011;4(1). https://doi.org/10.1186/1755-8794-4-1.

  94. Kaynak B, von Heydebreck A, Mebus S, Seelow D, Hennig S, Vogel J, Sperling HP, Pregla R, Alexi-Meskishvili V, Hetzer R, Lange PE, Vingron M, Lehrach H, Sperling S. Genome-wide array analysis of normal and malformed human hearts. Circulation. 2003;107(19):2467–74.

    Article  PubMed  Google Scholar 

  95. Wu Y, Feng W, Zhang H, Li S, Wang D, Pan X, Hu S. Ca2+-regulatory proteins in cardiomyocytes from the right ventricle in children with congenital heart disease. J Transl Med. 2012;10:67. https://doi.org/10.1186/1479-5876-10-67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 2010;31(9):1085–94. https://doi.org/10.1038/aps.2010.132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Jeewa A, Manickaraj AK, Mertens L, Manlhiot C, Kinnear C, Mondal T, Smythe J, Rosenberg H, Lougheed J, McCrindle BW, van Arsdell G, Redington AN, Mital S. Genetic determinants of right-ventricular remodeling after tetralogy of Fallot repair. Pediatr Res. 2012;72(4):407–13. https://doi.org/10.1038/pr.2012.95.

    Article  PubMed  Google Scholar 

  98. Lawler J, Duquette M, Whittaker CA, Adams JC, McHenry K, DeSimone DW. Identification and characterization of thrombospondin-4, a new member of the thrombospondin gene family. J Cell Biol. 1993;120(4):1059–67.

    Article  PubMed  CAS  Google Scholar 

  99. Lawler J, Hynes RO. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol. 1986;103(5):1635–48.

    Article  PubMed  CAS  Google Scholar 

  100. Adams JC, Lawler J. The thrombospondins. Cold Spring Harb Perspect Biol. 2011;3(10):a009712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol. 2001;17:25–51.

    Article  PubMed  CAS  Google Scholar 

  102. Xia Y, Dobaczewski M, Gonzalez-Quesada C, Chen W, Biernacka A, Li N, Lee DW, Frangogiannis NG. Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension. 2011;58(5):902–11.

    Article  PubMed  CAS  Google Scholar 

  103. Mustonen E, Aro J, Puhakka J, Ilves M, Soini Y, Leskinen H, Ruskoaho H, Rysä J. Thrombospondin-4 expression is rapidly upregulated by cardiac overload. Biochem Biophys Res Commun. 2008;373(2):186–91.

    Article  PubMed  CAS  Google Scholar 

  104. Melenovsky V, Benes J, Skaroupkova P, Sedmera D, Strnad H, Kolar M, Vlcek C, Petrak J, Benes J Jr, Papousek F, Oliyarnyk O, Kazdova L, Cervenka L. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol Cell Biochem. 2011;354(1-2):83–96.

    Article  PubMed  CAS  Google Scholar 

  105. Swinnen M, Vanhoutte D, Van Almen GC, Hamdani N, Schellings MW, D'hooge J, Van der Velden J, Weaver MS, Sage EH, Bornstein P, Verheyen FK, VandenDriessche T, Chuah MK, Westermann D, Paulus WJ, Van de Werf F, Schroen B, Carmeliet P, Pinto YM, Heymans S. Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation. 2009;120(16):1585–97.

    Article  PubMed  CAS  Google Scholar 

  106. Schroen B, Heymans S, Sharma U, Blankesteijn WM, Pokharel S, Cleutjens JP, Porter JG, Evelo CT, Duisters R, van Leeuwen RE, Janssen BJ, Debets JJ, Smits JF, Daemen MJ, Crijns HJ, Bornstein P, Pinto YM. Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circ Res. 2004;95(5):515–22.

    Article  PubMed  CAS  Google Scholar 

  107. Toth A, Nickson P, Mandl A, Bannister ML, Toth K, Erhardt P. Endoplasmic reticulum stress as a novel therapeutic target in heart diseases. Cardiovasc Hematol Disord Drug Targets. 2007;7:205–18.

    Article  PubMed  CAS  Google Scholar 

  108. Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ Res. 2010;107(10):1185–97.

    Article  PubMed  CAS  Google Scholar 

  109. Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J, Entman ML. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 2005;111(22):2935–42.

    Article  PubMed  CAS  Google Scholar 

  110. Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circ Res. 2009;105(10):934–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225(3):631–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105(12):1164–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chilton L, Giles WR, Smith GL. Evidence of intercellular coupling between co-cultured adult rabbit ventricular myocytes and myofibroblasts. J Physiol. 2007;583(Pt 1):225–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Baudino TA, McFadden A, Fix C, Hastings J, Price R, Borg TK. Cell patterning: interaction of cardiac myocytes and fibroblasts in three-dimensional culture. Microsc Microanal. 2008;14(2):117–25.

    Article  PubMed  CAS  Google Scholar 

  115. Zannad F, Rossignol P, Iraqi W. Extracellular matrix fibrotic markers in heart failure. Heart Fail Rev. 2010;15(4):319–29.

    Article  PubMed  CAS  Google Scholar 

  116. Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27(6):1281–92.

    Article  PubMed  CAS  Google Scholar 

  117. Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure. Heart Fail Rev. 2014;19(2):173–85.

    Article  PubMed  CAS  Google Scholar 

  118. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P. Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res. 1990;67(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  119. Deb A, Ubil E. Cardiac fibroblast in development and wound healing. J Mol Cell Cardiol. 2014;70:47–55.

    Article  PubMed  CAS  Google Scholar 

  120. Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and heart failure. Circ Res. 2013;112(1):195–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Tao G, Levay AK, Peacock JD, Huk DJ, Both SN, Purcell NH, Pinto JR, Galantowicz ML, Koch M, Lucchesi PA, Birk DE, Lincoln J. Collagen XIV is important for growth and structural integrity of the myocardium. J Mol Cell Cardiol. 2012;53(5):626–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gil-Cayuela C, Rivera M, Ortega A, Tarazón E, Triviño JC, Lago F, González-Juanatey JR, Almenar L, Martínez-Dolz L, Portolés M. RNA sequencing analysis identifies new human collagen genes involved in cardiac remodeling. Am Coll Cardiol. 2015;65(12):1265–7.

    Article  Google Scholar 

  124. López B, González A, Ravassa S, Beaumont J, Moreno MU, San José G, Querejeta R, Díez J. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol. 2015;65(22):2449–56.

    Article  PubMed  CAS  Google Scholar 

  125. Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res. 2015;116(7):1269–76.

    Article  PubMed  CAS  Google Scholar 

  126. Sun Y, Kiani MF, Postlethwaite AE, Weber KT. Infarct scar as living tissue. Basic Res Cardiol. 2002;97(5):343–7.

    Article  PubMed  Google Scholar 

  127. Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol. 2010;48(3):558–63.

    Article  PubMed  CAS  Google Scholar 

  128. Lindsey ML, Iyer RP, Jung M, DeLeon-Pennell KY, Ma Y. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol. 2016;91:134–40.

    Article  PubMed  CAS  Google Scholar 

  129. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res. 1995;30(4):537–43.

    Article  PubMed  CAS  Google Scholar 

  130. Gonzalez-Quesada C, Cavalera M, Biernacka A, Kong P, Lee DW, Saxena A, Frunza O, Dobaczewski M, Shinde A, Frangogiannis NG. Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ Res. 2013;113(12):1331–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ma Y, Yabluchanskiy A, Lindsey ML. Thrombospondin-1: the good, the bad, and the complicated. Circ Res. 2013;113(12):1272–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Bein K, Simons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem. 2000;275(41):32167–73.

    Article  PubMed  CAS  Google Scholar 

  133. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem. 2001;276(11):8403–8.

    Article  PubMed  CAS  Google Scholar 

  134. Hall MC, Young DA, Waters JG, Rowan AD, Chantry A, Edwards DR, Clark IM. The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J Biol Chem. 2003;278(12):10304–13.

    Article  PubMed  CAS  Google Scholar 

  135. Leung LL, Nachman RL. Complex formation of platelet thrombospondin with fibrinogen. J Clin Invest. 1982;70(3):542–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Mumby SM, Raugi GJ, Bornstein P. Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J Cell Biol. 1984;98(2):646–52.

    Article  PubMed  CAS  Google Scholar 

  137. Bale MD, Mosher DF. Effects of thrombospondin on fibrin polymerization and structure. J Biol Chem. 1986;261(2):862–8.

    PubMed  CAS  Google Scholar 

  138. Narouz-Ott L, Maurer P, Nitsche DP, Smyth N, Paulsson M. Thrombospondin-4 binds specifically to both collagenous and non-collagenous extracellular matrix proteins via its C-terminal domains. J Biol Chem. 2000;275(47):37110–7.

    Article  PubMed  CAS  Google Scholar 

  139. Mustonen E, Ruskoaho H, Rysä J. Thrombospondin-4, tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14: novel extracellular matrix modulating factors in cardiac remodelling. Ann Med. 2012;44(8):793–804.

    Article  PubMed  CAS  Google Scholar 

  140. Sawaki D, Hou L, Tomida S, Sun J, Zhan H, Aizawa K, Son BK, Kariya T, Takimoto E, Otsu K, Conway SJ, Manabe I, Komuro I, Friedman SL, Nagai R, Suzuki T. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovasc Res. 2015;107(4):420–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.

    Article  PubMed  Google Scholar 

  142. Ma Y, de Castro Brás LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC, Lindsey ML. Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch. 2014;466(6):1113–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388–400.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wang C, Wang X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim Biophys Acta. 2015;1852(2):188–94.

    Article  PubMed  CAS  Google Scholar 

  145. Tarone G, Brancaccio M. Keep your heart in shape: molecular chaperone networks for treating heart disease. Cardiovasc Res. 2014;102(3):346–61.

    Article  PubMed  CAS  Google Scholar 

  146. James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation. 1994;90(1):556–73.

    Article  PubMed  CAS  Google Scholar 

  147. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335(16):1182–9.

    Article  PubMed  CAS  Google Scholar 

  148. Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn WP, Schaper J. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92(7):715–24.

    Article  PubMed  CAS  Google Scholar 

  149. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–73. https://doi.org/10.1161/CIRCRESAHA.111.243162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, Lorenz-Meyer S, Schaper J. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol. 2000;32(2):197–208.

    Article  PubMed  CAS  Google Scholar 

  151. Black SC, Huang JQ, Rezaiefar P, Radinovic S, Eberhart A, Nicholson DW, Rodger IW. Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. J Mol Cell Cardiol. 1998;30(4):733–42.

    Article  PubMed  CAS  Google Scholar 

  152. Dorn GW. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res. 2009;81(3):465–73. https://doi.org/10.1093/cvr/cvn243.

    Article  PubMed  CAS  Google Scholar 

  153. Maruyama R, Takemura G, Aoyama T, Hayakawa K, Koda M, Kawase Y, Qiu X, Ohno Y, Minatoguchi S, Miyata K, Fujiwara T, Fujiwara H. Dynamic process of apoptosis in adult rat cardiomyocytes analyzed using 48-hour videomicroscopy and electron microscopy: beating and rate are associated with the apoptotic process. Am J Pathol. 2001;159(2):683–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, Jones WK, Dorn GW. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest. 2007;117(10):2825–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Whelan RS, Mani K, Kitsis RN. Nipping at cardiac remodeling. J Clin Invest. 2007;117(10):2751–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Dawson DW, Volpert OV, Pearce SF, Schneider AJ, Silverstein RL, Henkin J, Bouck NP. Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Mol Pharmacol. 1999;55(2):332–8.

    Article  PubMed  CAS  Google Scholar 

  157. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997;138(3):707–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Asch AS, Silbiger S, Heimer E, Nachman RL. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun. 1992;182(3):1208–17.

    Article  PubMed  CAS  Google Scholar 

  159. Jiménez B, Volpert OV, Reiher F, Chang L, Muñoz A, Karin M, Bouck N. c-Jun N-terminal kinase activation is required for the inhibition of neovascularization by thrombospondin-1. Oncogene. 2001;20(26):3443–8.

    Article  PubMed  Google Scholar 

  160. Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 2000;6(1):41–8.

    Article  PubMed  Google Scholar 

  161. Simantov R, Febbraio M, Silverstein RL. The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol. 2005;24(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  162. Yee KO, Connolly CM, Duquette M, Kazerounian S, Washington R, Lawler J. The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res Treat. 2009;114(1):85–96.

    Article  PubMed  CAS  Google Scholar 

  163. Primo L, Ferrandi C, Roca C, Marchiò S, di Blasio L, Alessio M, Bussolino F. Identification of CD36 molecular features required for its in vitro angiostatic activity. FASEB J. 2005;19(12):1713–5.

    Article  PubMed  CAS  Google Scholar 

  164. Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med. 2002;8(4):349–57.

    Article  PubMed  CAS  Google Scholar 

  165. Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol. 2016;93:186–99.

    Article  PubMed  CAS  Google Scholar 

  166. Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, Horne BD, Stewart AF, Assimes TL, Wild PS, Allayee H, Nitschke PL, Patel RS, Martinelli N, Girelli D, Quyyumi AA, Anderson JL, Erdmann J, Hall AS, Schunkert H, Quertermous T, Blankenberg S, Hazen SL, Roberts R, Kathiresan S, Samani NJ, Epstein SE, Rader DJ, Myocardial Infarction Genetics Consortium; Wellcome Trust Case Control Consortium. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377(9763):383–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W, Wang X. ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009;104(5):688–98.

    Article  PubMed  CAS  Google Scholar 

  168. Kessler T, Zhang L, Liu Z, Yin X, Huang Y, Wang Y, Fu Y, Mayr M, Ge Q, Xu Q, Zhu Y, Wang X, Schmidt K, de Wit C, Erdmann J, Schunkert H, Aherrahrou Z, Kong W. ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation. 2015;131(13):1191–201.

    Article  PubMed  CAS  Google Scholar 

  169. Iruela-Arispe ML. Regulation of thrombospondin1 by extracellular proteases. Curr Drug Targets. 2008;9(10):863–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol. 2010;20(2):143–8.

    Article  PubMed  CAS  Google Scholar 

  171. Carra S, Seguin SJ, Landry J. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy. 2008;4(2):237–9.

    Article  PubMed  CAS  Google Scholar 

  172. Babu-Narayan SV, Kilner PJ, Li W, Moon JC, Goktekin O, Davlouros PA, Khan M, Ho SY, Pennell DJ, Gatzoulis MA. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006;113(3):405–13.

    Article  PubMed  CAS  Google Scholar 

  173. Weidemann F, Herrmann S, Störk S, Niemann M, Frantz S, Lange V, Beer M, Gattenlöhner S, Voelker W, Ertl G, Strotmann JM. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 2009;120(7):577–84. https://doi.org/10.1161/CIRCULATIONAHA.108.847772.

    Article  PubMed  CAS  Google Scholar 

  174. Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn WP, Schaper J. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.

    Article  PubMed  Google Scholar 

  175. Jellis C, Martin J, Narula J, Marwick TH. Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol. 2010;56(2):89–97. https://doi.org/10.1016/j.jacc.2010.02.047.

    Article  PubMed  CAS  Google Scholar 

  176. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74. https://doi.org/10.1007/s00018-013-1349-6.

    Article  PubMed  CAS  Google Scholar 

  177. Li AH, Liu PP, Villarreal FJ, Garcia RA. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives. Circ Res. 2014;114(5):916–27. https://doi.org/10.1161/CIRCRESAHA.114.302819.

    Article  PubMed  CAS  Google Scholar 

  178. Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP. Patterns of myocardial fibrosis. J Mol Cell Cardiol. 1989;21(Suppl 5):121–31.

    Article  PubMed  Google Scholar 

  179. Gyöngyösi M, Winkler J, Ramos I, Do QT, Firat H, McDonald K, González A, Thum T, Díez J, Jaisser F, Pizard A, Zannad F. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017;19(2):177–91. https://doi.org/10.1002/ejhf.696.

    Article  PubMed  Google Scholar 

  180. Heymans S, González A, Pizard A, Papageorgiou AP, López-Andrés N, Jaisser F, Thum T, Zannad F, Díez J. Searching for new mechanisms of myocardial fibrosis with diagnostic and/or therapeutic potential. Eur J Heart Fail. 2015;17(8):764–71. https://doi.org/10.1002/ejhf.312.

    Article  PubMed  Google Scholar 

  181. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40–51.

    Article  PubMed  CAS  Google Scholar 

  182. Lajiness JD, Conway SJ. Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol. 2014;70:2–8. https://doi.org/10.1016/j.yjmcc.2013.11.003.

    Article  PubMed  CAS  Google Scholar 

  183. Watson CJ, Phelan D, Collier P, Horgan S, Glezeva N, Cooke G, Xu M, Ledwidge M, McDonald K, Baugh JA. Extracellular matrix sub-types and mechanical stretch impact human cardiac fibroblast responses to transforming growth factor beta. Connect Tissue Res. 2014;55(3):248–56. https://doi.org/10.3109/03008207.2014.904856.

    Article  PubMed  CAS  Google Scholar 

  184. Brilla CG, Maisch B, Zhou G, Weber KT. Hormonal regulation of cardiac fibroblast function. Eur Heart J. 1995;16(Suppl C):45–50.

    Article  PubMed  CAS  Google Scholar 

  185. Schellings MW, Pinto YM, Heymans S. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2004;64(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  186. Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113(6):676–89. https://doi.org/10.1161/CIRCRESAHA.113.300226.

    Article  PubMed  CAS  Google Scholar 

  187. Robins SP. Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans. 2007;35(Pt 5):849–52.

    Article  PubMed  CAS  Google Scholar 

  188. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58. https://doi.org/10.1146/annurev.biochem.77.032207.120833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. López B, Querejeta R, González A, Larman M, Díez J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension. 2012;60(3):677–83. https://doi.org/10.1161/HYPERTENSIONAHA.112.196113.

    Article  PubMed  CAS  Google Scholar 

  190. Kawara T, Derksen R, de Groot JR, Coronel R, Tasseron S, Linnenbank AC, Hauer RN, Kirkels H, Janse MJ, de Bakker JM. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation. 2001;104(25):3069–75.

    Article  PubMed  CAS  Google Scholar 

  191. Anderson KP, Walker R, Urie P, Ershler PR, Lux RL, Karwandee SV. Myocardial electrical propagation in patients with idiopathic dilated cardiomyopathy. J Clin Invest. 1993;92(1):122–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Schwartzkopff B, Brehm M, Mundhenke M, Strauer BE. Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension. 2000;36(2):220–5.

    Article  PubMed  CAS  Google Scholar 

  193. Wald RM, Haber I, Wald R, Valente AM, Powell AJ, Geva T. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation. 2009;119(10):1370–7. https://doi.org/10.1161/CIRCULATIONAHA.108.816546.

    Article  PubMed  PubMed Central  Google Scholar 

  194. van Oorschot JW, Gho JM, van Hout GP, Froeling M, Hoefer IE, Doevendans PA, Luijten PR, Chamuleau SA, Zwanenburg JJ, Jansen Of Lorkeers SJ. Endogenous contrast MRI of cardiac fibrosis: beyond late gadolinium enhancement. J Magn Reson Imaging. 2015;41(5):1181–9. https://doi.org/10.1002/jmri.24715.

    Article  PubMed  Google Scholar 

  195. Sado DM, Flett AS, Moon JC. Novel imaging techniques for diffuse myocardial fibrosis. Futur Cardiol. 2011;7(5):643–50. https://doi.org/10.2217/fca.11.45.

    Article  Google Scholar 

  196. Gyöngyösi M, Blanco J, Marian T, Trón L, Petneházy O, Petrasi Z, Hemetsberger R, Rodriguez J, Font G, Pavo IJ, Kertész I, Balkay L, Pavo N, Posa A, Emri M, Galuska L, Kraitchman DL, Wojta J, Huber K, Glogar D. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging. 2008;1(2):94–103. https://doi.org/10.1161/CIRCIMAGING.108.797449.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15. https://doi.org/10.2967/jnumed.112.105353.

    Article  PubMed  CAS  Google Scholar 

  198. Li XG, Roivainen A, Bergman J, Heinonen A, Bengel F, Thum T, Knuuti J. Enabling [(18)F]-bicyclo[6.1.0]nonyne for oligonucleotide conjugation for positron emission tomography applications: [(18)F]-anti-microRNA-21 as an example. Chem Commun. 2015;51(48):9821–4. https://doi.org/10.1039/c5cc02618k.

    Article  CAS  Google Scholar 

  199. Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, Dart AM. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med. 2015;13:314. https://doi.org/10.1186/s12967-015-0672-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, Tarasoutchi F, Grinberg M, Rochitte CE. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol. 2010;56(4):278–87. https://doi.org/10.1016/j.jacc.2009.12.074.

    Article  PubMed  Google Scholar 

  201. Aoki T, Fukumoto Y, Sugimura K, Oikawa M, Satoh K, Nakano M, Nakayama M, Shimokawa H. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure -comparison between preserved and reduced ejection fraction heart failure. Circ J. 2011;75(11):2605–13.

    Article  PubMed  CAS  Google Scholar 

  202. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103(48):18255–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31(3):367–73.

    Article  PubMed  CAS  Google Scholar 

  204. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007;116(3):258–67.

    Article  PubMed  CAS  Google Scholar 

  205. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–42. https://doi.org/10.1038/nature09783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  207. Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, Sun Q, Zhao Z. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS One. 2014;9(8):e106318. https://doi.org/10.1371/journal.pone.0106318.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lai CT, Ng EK, Chow PC, Kwong A, Cheung YF. Circulating microRNA expression profile and systemic right ventricular function in adults after atrial switch operation for complete transposition of the great arteries. BMC Cardiovasc Disord. 2013;13:73. https://doi.org/10.1186/1471-2261-13-73.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Tutarel O, Dangwal S, Bretthauer J, Westhoff-Bleck M, Roentgen P, Anker SD, Bauersachs J, Thum T. Circulating miR-423_5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Int J Cardiol. 2013;167(1):63–6. https://doi.org/10.1016/j.ijcard.2011.11.082.

    Article  PubMed  Google Scholar 

  210. Zhang J, Chang JJ, Xu F, Ma XJ, Wu Y, Li WC, Wang HJ, Huang GY, Ma D. MicroRNA deregulation in right ventricular outflow tract myocardium in nonsyndromic tetralogy of fallot. Can J Cardiol. 2013;29(12):1695–703. https://doi.org/10.1016/j.cjca.2013.07.002.

    Article  PubMed  Google Scholar 

  211. Bittel DC, Kibiryeva N, Marshall JA, O’Brien JE. MicroRNA-421 dysregulation is associated with tetralogy of Fallot. Cells. 2014;3(3):713–23. https://doi.org/10.3390/cells3030713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Tamura T, Said S, Harris J, Lu W, Gerdes AM. Reverse remodeling of cardiac myocyte hypertrophy in hypertension and failure by targeting of the renin-angiotensin system. Circulation. 2000;102(2):253–9.

    Article  PubMed  CAS  Google Scholar 

  213. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.

    Article  PubMed  CAS  Google Scholar 

  214. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54. https://doi.org/10.1101/gad.1738708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Apitz C, Honjo O, Humpl T, Li J, Assad RS, Cho MY, Hong J, Friedberg MK, Redington AN. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144(6):1494–501. https://doi.org/10.1016/j.jtcvs.2012.06.027.

    Article  PubMed  Google Scholar 

  216. Unverferth DV, Fetters JK, Unverferth BJ, Leier CV, Magorien RD, Arn AR, Baker PB. Human myocardial histologic characteristics in congestive heart failure. Circulation. 1983;68(6):1194–200.

    Article  PubMed  CAS  Google Scholar 

  217. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124:1537–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Hwang MW, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, Hara M, Miyamoto T, Touma M, Sasayama S. Neutralization of interleukin-1beta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J Am Coll Cardiol. 2001;38(5):1546–53.

    Article  PubMed  CAS  Google Scholar 

  219. Maekawa Y, Anzai T, Yoshikawa T, Asakura Y, Takahashi T, Ishikawa S, Mitamura H, Ogawa S. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol. 2002;39(2):241–6.

    Article  PubMed  Google Scholar 

  220. Hafizi S, Wharton J, Chester AH, Yacoub MH. Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts. Cell Physiol Biochem. 2004;14(4-6):285–92.

    Article  PubMed  CAS  Google Scholar 

  221. Katwa LC. Cardiac myofibroblasts isolated from the site of myocardial infarction express endothelin de novo. Am J Physiol Heart Circ Physiol. 2003;285(3):H1132–9.

    Article  PubMed  CAS  Google Scholar 

  222. Hsieh PC, Davis ME, Lisowski LK, Lee RT. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Rich S, McLaughlin VV. Endothelin receptor blockers in cardiovascular disease. Circulation. 2003;108:2184–90.

    Article  PubMed  CAS  Google Scholar 

  224. Zolk O, Quattek J, Sitzler G, Schrader T, Nickenig G, et al. Expression of endothelin-1, endothelin-converting enzyme, and endothelin receptors in chronic heart failure. Circulation. 1999;99:2118–23.

    Article  PubMed  CAS  Google Scholar 

  225. Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res. 2010;106(11):1675–80. https://doi.org/10.1161/CIRCRESAHA.110.217737.

    Article  PubMed  CAS  Google Scholar 

  226. Sütsch G, Kiowski W, Yan XW, Hunziker P, Christen S, Strobel W, Kim JH, Rickenbacher P, Bertel O. Short-term oral endothelin-receptor antagonist therapy in conventionally treated patients with symptomatic severe chronic heart failure. Circulation. 1998;98(21):2262–8.

    Article  PubMed  Google Scholar 

  227. Thomson A. Interleukins. In: Oppenheim JJ, editor. The cytokine handbook. 3rd ed. San Diego: Academic; 1998. p. 146–62.

    Google Scholar 

  228. Henry G, Garner WL. Inflammatory mediators in wound healing. Surg Clin North Am. 2003;83(3):483–507.

    Article  PubMed  Google Scholar 

  229. Pietilä K, Hermens WT, Harmoinen A, Baardman T, Pasternack A, Topol EJ, Simoons ML. Comparison of peak serum C-reactive protein and hydroxybutyrate dehydrogenase levels in patients with acute myocardial infarction treated with alteplase and streptokinase. Am J Cardiol. 1997;80(8):1075–7.

    Article  PubMed  Google Scholar 

  230. Furman MI, Becker RC, Yarzebski J, Savegeau J, Gore JM, Goldberg RJ. Effect of elevated leukocyte count on in-hospital mortality following acute myocardial infarction. Am J Cardiol. 1996;78(8):945–8.

    Article  PubMed  CAS  Google Scholar 

  231. Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999;43(4):860–78.

    Article  PubMed  CAS  Google Scholar 

  232. Engler RL. Free radical and granulocyte-mediated injury during myocardial ischemia and reperfusion. Am J Cardiol. 1989;63(10):19E–23E.

    Article  PubMed  CAS  Google Scholar 

  233. Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992;258(5084):964–9.

    Article  PubMed  CAS  Google Scholar 

  234. Ebnet K, Vestweber D. Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol. 1999;112(1):1–23.

    Article  PubMed  CAS  Google Scholar 

  235. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53(1):31–47.

    Article  PubMed  CAS  Google Scholar 

  236. Lefer DJ, Granger DN. Oxidative stress and cardiac disease. Am J Med. 2000;109(4):315–23.

    Article  PubMed  CAS  Google Scholar 

  237. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47(3):446–56.

    Article  PubMed  CAS  Google Scholar 

  238. Hausenloy DJ, Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol. 2011;8(11):619–29.

    Article  PubMed  CAS  Google Scholar 

  239. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart. J Clin Invest. 2005;115(3):565–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Filomeni G, Ciriolo MR. Redox control of apoptosis: an update. Antioxid Redox Signal. 2006;8(11-12):2187–92.

    Article  PubMed  CAS  Google Scholar 

  241. Matsuzawa A, Ichijo H. Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal. 2005;7(3-4):472–81.

    Article  PubMed  CAS  Google Scholar 

  242. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115(3):500–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal. 2006;8(5-6):691–728.

    Article  PubMed  CAS  Google Scholar 

  244. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003;41(12):2164–71.

    Article  PubMed  CAS  Google Scholar 

  245. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000;20(10):2175–83.

    Article  PubMed  CAS  Google Scholar 

  246. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem. 1996;271(38):23317–21.

    Article  PubMed  CAS  Google Scholar 

  247. Görlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 2000;87(1):26–32.

    Article  PubMed  Google Scholar 

  248. Jones SA, O'Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT. Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Phys. 1996;271(4 Pt 2):H1626–34.

    CAS  Google Scholar 

  249. Chamseddine AH, Miller FJ Jr. Gp91phox contributes to NADPH oxidase activity in aortic fibroblasts but not smooth muscle cells. Am J Physiol Heart Circ Physiol. 2003;285(6):H2284–9.

    Article  PubMed  CAS  Google Scholar 

  250. Wenzel S, Taimor G, Piper HM, Schlüter KD. Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J. 2001;15(12):2291–3.

    Article  PubMed  CAS  Google Scholar 

  251. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181–9.

    Article  PubMed  CAS  Google Scholar 

  252. Aguirre J, Lambeth JD. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic Biol Med. 2010;49(9):1342–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Brandes RP, Weissmann N, Schröder K. NADPH oxidases in cardiovascular disease. Free Radic Biol Med. 2010;49(5):687–706.

    Article  PubMed  CAS  Google Scholar 

  254. Geiszt M. NADPH oxidases: new kids on the block. Cardiovasc Res. 2006;71(2):289–99.

    Article  PubMed  CAS  Google Scholar 

  255. Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci. 2015;16(10):25234–63. https://doi.org/10.3390/ijms161025234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–90. https://doi.org/10.1161/CIRCRESAHA.111.243972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O'Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133(3):462–74. https://doi.org/10.1016/j.cell.2008.02.048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Gilleron M, Marechal X, Montaigne D, Franczak J, Neviere R, Lancel S. NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. Biochem Biophys Res Commun. 2009;388(4):727–31. https://doi.org/10.1016/j.bbrc.2009.08.085.

    Article  PubMed  CAS  Google Scholar 

  259. Hayashi H, Kobara M, Abe M, Tanaka N, Gouda E, Toba H, Yamada H, Tatsumi T, Nakata T, Matsubara H. Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens Res. 2008;31(2):363–75. https://doi.org/10.1291/hypres.31.363.

    Article  PubMed  CAS  Google Scholar 

  260. Li Y, Arnold JM, Pampillo M, Babwah AV, Peng T. Taurine prevents cardiomyocyte death by inhibiting NADPH oxidase-mediated calpain activation. Free Radic Biol Med. 2009;46(1):51–61. https://doi.org/10.1016/j.freeradbiomed.2008.09.025.

    Article  PubMed  CAS  Google Scholar 

  261. Murdoch CE, Zhang M, Cave AC, Shah AM. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res. 2006;71(2):208–15.

    Article  PubMed  CAS  Google Scholar 

  262. Akki A, Zhang M, Murdoch C, Brewer A, Shah AM. NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol. 2009;47(1):15–22.

    Article  PubMed  CAS  Google Scholar 

  263. Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal. 2011;15(8):2301–33. https://doi.org/10.1089/ars.2010.3792.

    Article  PubMed  CAS  Google Scholar 

  264. Zhang M, Perino A, Ghigo A, Hirsch E, Shah AM. NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal. 2013;18(9):1024–41. https://doi.org/10.1016/j.yjmcc.2009.04.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N. Oxidative stress and ischemic myocardial syndromes. Med Sci Monit. 2009;15(10):RA209–19.

    PubMed  CAS  Google Scholar 

  266. Qipshidze N, Tyagi N, Metreveli N, Lominadze D, Tyagi SC. Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. Am J Physiol Heart Circ Physiol. 2012;302(3):H688–96. https://doi.org/10.1152/ajpheart.00777.2011.

    Article  PubMed  CAS  Google Scholar 

  267. Borchi E, Bargelli V, Stillitano F, Giordano C, Sebastiani M, Nassi PA, d'Amati G, Cerbai E, Nediani C. Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochim Biophys Acta. 2010;1802(3):331–8.

    Article  PubMed  CAS  Google Scholar 

  268. Robbins CS, Swirski FK. The multiple roles of monocyte subsets in steady state and inflammation. Cell Mol Life Sci. 2010;67(16):2685–93. https://doi.org/10.1007/s00018-010-0375-x.

    Article  PubMed  CAS  Google Scholar 

  269. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, Kitabata H, Okochi K, Arita Y, Ishibashi K, Komukai K, Kataiwa H, Nakamura N, Hirata K, Tanaka A, Akasaka T. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol. 2009;54(2):130–8. https://doi.org/10.1016/j.jacc.2009.04.021.

    Article  PubMed  Google Scholar 

  270. Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, Tersteeg C, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation. 2010;121(1):80–90. https://doi.org/10.1161/CIRCULATIONAHA.109.880187.

    Article  PubMed  CAS  Google Scholar 

  271. Mann DL. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res. 2011;108(9):1133–45. https://doi.org/10.1161/CIRCRESAHA.110.226936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbäurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008;117(25):3216–26. https://doi.org/10.1161/CIRCULATIONAHA.108.769331.

    Article  PubMed  CAS  Google Scholar 

  273. Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011;108(9):1122–32. https://doi.org/10.1161/CIRCRESAHA.110.226928.

    Article  PubMed  CAS  Google Scholar 

  274. Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol. 2008;173(1):57–67. https://doi.org/10.2353/ajpath.2008.070974.

    Article  PubMed  PubMed Central  Google Scholar 

  275. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32. https://doi.org/10.1016/j.cell.2010.01.040.

    Article  CAS  PubMed  Google Scholar 

  276. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123(6):594–604. https://doi.org/10.1161/CIRCULATIONAHA.110.982777.

    Article  PubMed  CAS  Google Scholar 

  277. Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Haemost. 2007;97(5):738–47.

    Article  PubMed  CAS  Google Scholar 

  278. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80(8):2012–20.

    PubMed  CAS  Google Scholar 

  279. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol. 2004;164(2):665–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Rumberger JA. Ventricular dilatation and remodeling after myocardial infarction. Mayo Clin Proc. 1994;69(7):664–74.

    Article  PubMed  CAS  Google Scholar 

  281. Aikawa Y, Rohde L, Plehn J, Greaves SC, Menapace F, Arnold MO, Rouleau JL, Pfeffer MA, Lee RT, Solomon SD. Regional wall stress predicts ventricular remodeling after anteroseptal myocardial infarction in the Healing and Early Afterload Reducing Trial (HEART): an echocardiography-based structural analysis. Am Heart J. 2001;141(2):234–42.

    Article  PubMed  CAS  Google Scholar 

  282. Norton GR, Woodiwiss AJ, Gaasch WH, Mela T, Chung ES, Aurigemma GP, Meyer TE. Heart failure in pressure overload hypertrophy. The relative roles of ventricular remodeling and myocardial dysfunction. J Am Coll Cardiol. 2002;39(4):664–71.

    Article  PubMed  Google Scholar 

  283. Richards AM, Nicholls MG, Troughton RW, Lainchbury JG, Elliott J, Frampton C, Espiner EA, Crozier IG, Yandle TG, Turner J. Antecedent hypertension and heart failure after myocardial infarction. J Am Coll Cardiol. 2002;39(7):1182–8.

    Article  PubMed  Google Scholar 

  284. Cingolani OH, Kirk JA, Seo K, Koitabashi N, Lee DI, Ramirez-Correa G, Bedja D, Barth AS, Moens AL, Kass DA. Thrombospondin-4 is required for stretch-mediated contractility augmentation in cardiac muscle. Circ Res. 2011;109(12):1410–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Sayer G, Bhat G. The renin-angiotensin-aldosterone system and heart failure. Cardiol Clin. 2014;32(1):21–32. vii

    Article  PubMed  Google Scholar 

  286. Albuquerque FN, Brandão AA, Silva DA, Mourilhe-Rocha R, Duque GS, Gondar AF, Neves LM, Bittencourt MI, Pozzan R, Albuquerque DC. Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling. Arq Bras Cardiol. 2014;102(1):70–9.

    PubMed  PubMed Central  Google Scholar 

  287. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815–26.

    Article  PubMed  CAS  Google Scholar 

  288. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.

    Article  PubMed  CAS  Google Scholar 

  289. Vantrimpont P, Rouleau JL, Ciampi A, Harel F, de Champlain J, Bichet D, Moyé LA, Pfeffer M. Two-year time course and significance of neurohumoral activation in the Survival and Ventricular Enlargement (SAVE) study. Eur Heart J. 1998;19(10):1552–63.

    Article  PubMed  CAS  Google Scholar 

  290. Lee WH, Packer M. Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients with severe chronic heart failure. Circulation. 1986;73(2):257–67.

    Article  PubMed  CAS  Google Scholar 

  291. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20(1):248–54.

    Article  PubMed  CAS  Google Scholar 

  292. Maeda K, Tsutamoto T, Wada A, Mabuchi N, Hayashi M, Tsutsui T, Ohnishi M, Sawaki M, Fujii M, Matsumoto T, Kinoshita M. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol. 2000;36(5):1587–93.

    Article  PubMed  CAS  Google Scholar 

  293. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A. 2000;97(8):4239–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Yamamoto R, Akazawa H, Fujihara H, Ozasa Y, Yasuda N, Ito K, Kudo Y, Qin Y, Ueta Y, Komuro I. Angiotensin II type 1 receptor signaling regulates feeding behavior through anorexigenic corticotropin-releasing hormone in hypothalamus. J Biol Chem. 2011;286(24):21458–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Akazawa H, Yasuda N, Komuro I. Mechanisms and functions of agonist-independent activation in the angiotensin II type 1 receptor. Mol Cell Endocrinol. 2009;302(2):140–7.

    Article  PubMed  CAS  Google Scholar 

  296. Kamo T, Akazawa H, Komuro I. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int Heart J. 2015;56(3):249–54.

    Article  PubMed  CAS  Google Scholar 

  297. Ozasa Y, Akazawa H, Qin Y, Tateno K, Ito K, Kudo-Sakamoto Y, Yano M, Yabumoto C, Naito AT, Oka T, Lee JK, Minamino T, Nagai T, Kobayashi Y, Komuro I. Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells. Hypertens Res. 2013;36(10):859–65.

    Article  PubMed  CAS  Google Scholar 

  298. Akazawa H, Yano M, Yabumoto C, Kudo-Sakamoto Y, Komuro I. Angiotensin II type 1 and type 2 receptor-induced cell signaling. Curr Pharm Des. 2013;19(17):2988–95.

    Article  PubMed  CAS  Google Scholar 

  299. Sato M. Roles of accessory proteins for heterotrimeric G-protein in the development of cardiovascular diseases. Circ J. 2013;77(10):2455–61.

    Article  PubMed  CAS  Google Scholar 

  300. Wu J, You J, Wang S, Zhang L, Gong H, Zou Y. Insights into the activation and inhibition of angiotensin II type 1 receptor in the mechanically loaded heart. Circ J. 2014;78(6):1283–9.

    Article  PubMed  CAS  Google Scholar 

  301. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75(5):977–84.

    Article  PubMed  CAS  Google Scholar 

  302. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res. 1995;77(2):258–65.

    Article  PubMed  CAS  Google Scholar 

  303. Akazawa H. Mechanisms of cardiovascular homeostasis and pathophysiology--from gene expression, signal transduction to cellular communication. Circ J. 2015;79(12):2529–36.

    Article  PubMed  CAS  Google Scholar 

  304. Yasuda N, Miura S, Akazawa H, Tanaka T, Qin Y, Kiya Y, Imaizumi S, Fujino M, Ito K, Zou Y, Fukuhara S, Kunimoto S, Fukuzaki K, Sato T, Ge J, Mochizuki N, Nakaya H, Saku K, Komuro I. Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep. 2008;9(2):179–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Konstam MA, Rousseau MF, Kronenberg MW, Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation. 1992;86(2):431–8.

    Article  PubMed  CAS  Google Scholar 

  306. Greenberg B, Quinones MA, Koilpillai C, Limacher M, Shindler D, Benedict C, Shelton B. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulation. 1995;91(10):2573–81.

    Article  PubMed  CAS  Google Scholar 

  307. Hafizi S, Wharton J, Morgan K, Allen SP, Chester AH, Catravas JD, Polak JM, Yacoub MH. Expression of functional angiotensin-converting enzyme and AT1 receptors in cultured human cardiac fibroblasts. Circulation. 1998;98(23):2553–9.

    Article  PubMed  CAS  Google Scholar 

  308. Matsusaka T, Katori H, Inagami T, Fogo A, Ichikawa I. Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. J Clin Invest. 1999;103(10):1451–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Sadoshima J, Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993;73(3):413–23.

    Article  PubMed  CAS  Google Scholar 

  310. McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ. Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular fibrosis in vivo. Circulation. 1998;98(24):2765–73.

    Article  PubMed  CAS  Google Scholar 

  311. Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, Hsueh WA. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation. 2000;101(10):1130–7.

    Article  PubMed  CAS  Google Scholar 

  312. Hayashi M, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Tsutsui T, Matsui T, Fujii M, Matsumoto T, Yamamoto T, Horie H, Ohnishi M, Kinoshita M. Relationship between transcardiac extraction of aldosterone and left ventricular remodeling in patients with first acute myocardial infarction: extracting aldosterone through the heart promotes ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2001;38(5):1375–82.

    Article  PubMed  CAS  Google Scholar 

  313. Lijnen P, Petrov V. Induction of cardiac fibrosis by aldosterone. J Mol Cell Cardiol. 2000;32(6):865–79.

    Article  PubMed  CAS  Google Scholar 

  314. Fullerton MJ, Funder JW. Aldosterone and cardiac fibrosis: in vitro studies. Cardiovasc Res. 1994;28(12):1863–7.

    Article  PubMed  CAS  Google Scholar 

  315. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102(22):2700–6.

    Article  PubMed  CAS  Google Scholar 

  316. Altin SE, Schulze PC. Metabolism of the right ventricle and the response to hypertrophy and failure. Prog Cardiovasc Dis. 2012;55(2):229–33. https://doi.org/10.1016/j.pcad.2012.07.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. Dias CA, Assad RS, Caneo LF, Abduch MC, Aiello VD, Dias AR, Marcial MB, Oliveira SA. Reversible pulmonary trunk banding. II. An experimental model for rapid pulmonary ventricular hypertrophy. J Thorac Cardiovasc Surg. 2002;124(5):999–1006.

    Article  PubMed  Google Scholar 

  318. Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015:202–13.

    Article  PubMed  CAS  Google Scholar 

  319. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113(6):709–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10(6):238–45.

    Article  PubMed  CAS  Google Scholar 

  321. Karbowska J, Kochan Z, Smolenski RT. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett. 2003;8(1):49–53.

    PubMed  CAS  Google Scholar 

  322. Campos DH, Leopoldo AS, Lima-Leopoldo AP, Nascimento AF, Oliveira SA Jr, Silva DC, Sugizaki MM, Padovani CR, Cicogna AC. Obesity preserves myocardial function during blockade of the glycolytic pathway. Arq Bras Cardiol. 2014;103(4):330–7.

    PubMed  PubMed Central  Google Scholar 

  323. Azevedo PS, Minicucci MF, Santos PP, Paiva SA, Zornoff LA. Energy metabolism in cardiac remodeling and heart failure. Cardiol Rev. 2013;21(3):135–40.

    Article  PubMed  Google Scholar 

  324. Santos PP, Oliveira F, Ferreira VC, Polegato BF, Roscani MG, Fernandes AA, Modesto P, Rafacho BP, Zanati SG, Di Lorenzo A, Matsubara LS, Paiva SA, Zornoff LA, Minicucci MF, Azevedo PS. The role of lipotoxicity in smoke cardiomyopathy. PLoS One. 2014;9(12):e113739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91. https://doi.org/10.1161/CIRCULATIONAHA.106.632208.

    Article  PubMed  Google Scholar 

  326. Nagaya N, Goto Y, Satoh T, et al. Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle. J Nucl Med. 1998;39:1676–80.

    PubMed  CAS  Google Scholar 

  327. Bokhari S, Raina A, Rosenweig EB, et al. PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2011;4:641–7. https://doi.org/10.1161/CIRCIMAGING.110.963207.

    Article  PubMed  Google Scholar 

  328. Can MM, Kaymaz C, Tanboga IH, et al. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension. Clin Nucl Med. 2011;36:743–8. https://doi.org/10.1097/RLU.0b013e3182177389.

    Article  PubMed  Google Scholar 

  329. O’Connor RD, Xu J, Ewald GA, et al. Intramyocardial triglyceride quantification by magnetic resonance spectroscopy: in vivo and ex vivo correlation in human subjects. Magn Reson Med. 2011;65:1234–8. https://doi.org/10.1002/mrm.22734.

    Article  PubMed  CAS  Google Scholar 

  330. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115:176–88. https://doi.org/10.1161/CIRCRESAHA.113.301129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Sutendra G, Dromparis P, Paulin R, et al. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med. 2013;91(11):1315–27. https://doi.org/10.1007/s00109-013-1059-4.

    Article  PubMed  CAS  Google Scholar 

  332. Wasson S, Reddy HK, Dohrmann ML. Current perspectives of electrical remodeling and its therapeutic implications. J Cardiovasc Pharmacol Ther. 2004;9(2):129–44.

    Article  PubMed  CAS  Google Scholar 

  333. Hasenfuss G, Schillinger W, Lehnart SE, et al. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation. 1999;99(5):641–8.

    Article  PubMed  CAS  Google Scholar 

  334. Bers DM, Pogwizd SM, Schlotthauer K. Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Res Cardiol. 2002;97(Suppl 1):I36–42.

    PubMed  Google Scholar 

  335. Wang Z, Nolan B, Kutschke W, Hill JA. Na+-Ca2+ exchanger remodeling in pressure overload cardiac hypertrophy. J Biol Chem. 2001;276(21):17706–11.

    Article  PubMed  CAS  Google Scholar 

  336. Houser SR, Freeman AR, Jaegar JM, et al. Resting potential changes associated with Na+-K+ pump in failing heart muscle. Am J Phys. 1981;240(2):H168–76.

    CAS  Google Scholar 

  337. Matsumoto Y, Aihara H, Yamauchi-Kohno R, et al. Long-term endothelin a receptor blockade inhibits electrical remodeling in cardiomyopathic hamsters. Circulation. 2002;106(5):613–9.

    PubMed  CAS  Google Scholar 

  338. Sipido KR, Volders PG, de Groot SH, et al. Enhanced Ca2+ release and Na+/Ca2+ exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation. 2000;102(17):2137–44.

    Article  PubMed  CAS  Google Scholar 

  339. Kalogeropoulos AP, Georgiopoulou VV, Howell S, Pernetz MA, Fisher MR, Lerakis S, Martin RP. Evaluation of right intraventricular dyssynchrony by two-dimensional strain echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2008;21(9):1028–34. https://doi.org/10.1016/j.echo.2008.05.005.

    Article  PubMed  Google Scholar 

  340. López-Candales A, Dohi K, Rajagopalan N, Suffoletto M, Murali S, Gorcsan J, Edelman K. Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class. Cardiovasc Ultrasound. 2005;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  341. Vonk-Noordegraaf A, Marcus JT, Gan CT, Boonstra A, Postmus PE. Interventricular mechanical asynchrony due to right ventricular pressure overload in pulmonary hypertension plays an important role in impaired left ventricular filling. Chest. 2005;128(6 Suppl):628S–30S.

    Article  PubMed  Google Scholar 

  342. Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation. 1985;71(3):473–80.

    Article  PubMed  CAS  Google Scholar 

  343. Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A,Allaart CP, Götte MJ, Vonk-Noordegraaf A.Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51(7):750–7. https://doi.org/10.1016/j.jacc.2007.10.041.

    Article  PubMed  Google Scholar 

  344. Peschar M, Vermooy K, Vangat WYR, et al. Absence of reeverse electrical remodeling during regression of volume overload hypertrophy in canine ventricles. Cardiovasc Res. 2003;58(3):510–7.

    Article  PubMed  CAS  Google Scholar 

  345. Mayet J, Shahi M, McGrath K, Poulter NR, Sever PS, Foale RA, et al. Left ventricular hypertrophy and QT dispersion in hypertension. Hypertension. 1996;28(5):791–6.

    Article  PubMed  CAS  Google Scholar 

  346. Darbar D, Cherry CJ, Kerins DM. QT dispersion is reduced after valve replacement in patients with aortic stenosis. Heart. 1999;82(1):15–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  347. Reddy HK, Wasson S, Koshy SK, et al. Structural correlates of electrical remodeling in ventricular hypertrophy. Cardiovasc Res. 2003;58(3):495–7.

    Article  PubMed  CAS  Google Scholar 

  348. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, Piek JJ, de Wit C. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134–46. https://doi.org/10.1093/eurheartj/ehv100.

    Article  PubMed  CAS  Google Scholar 

  349. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol. 2012;302(1):H10–23. https://doi.org/10.1152/ajpheart.00574.2011.

    Article  PubMed  CAS  Google Scholar 

  350. Schaper W. Collateral circulation: past and present. Basic Res Cardiol. 2009;104(1):5–21. https://doi.org/10.1007/s00395-008-0760-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension. 2005;46(4):725–31.

    Article  PubMed  CAS  Google Scholar 

  352. Mulvany MJ. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol. 2012;110(1):49–55. https://doi.org/10.1111/j.1742-7843.2011.00758.x.

    Article  PubMed  CAS  Google Scholar 

  353. Zakrzewicz A, Secomb TW, Pries AR. Angioadaptation: keeping the vascular system in shape. News Physiol Sci. 2002;17:197–201.

    PubMed  Google Scholar 

  354. Koller A. Flow-dependent remodeling of small arteries: the stimuli and the sensors are (still) in question. Circ Res. 2006;99(1):6–9.

    Article  PubMed  CAS  Google Scholar 

  355. Pries AR, Reglin B, Secomb TW. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol. 2001;281(3):H1015–25.

    Article  PubMed  CAS  Google Scholar 

  356. Hopkins WE, Ochoa LL, Richardson GW, et al. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant. 1996;15(1 Pt 1):100–5.

    PubMed  CAS  Google Scholar 

  357. Reis Filho JR, Cardoso JN, Cardoso CM, Pereira-Barretto AC. Reverse cardiac remodeling: a marker of better prognosis in heart failure. Arq Bras Cardiol. 2015;104(6):502–6. https://doi.org/10.5935/abc.20150025.

    Article  PubMed  Google Scholar 

  358. Hellawell JL, Margulies KB. Myocardial reverse remodeling. Cardiovasc Ther. 2012;30(3):172–81. https://doi.org/10.1111/j.1755-5922.2010.00247.x.

    Article  PubMed  CAS  Google Scholar 

  359. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56(5):392–406. https://doi.org/10.1016/j.jacc.2010.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  360. Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J. Angiotensin II activates nuclear transcription factor kappa B through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res. 2000;86(12):1266–72.

    Article  PubMed  CAS  Google Scholar 

  361. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993;92(4):1866–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  362. Pi XJ, Chen X. Captopril and ramiprilat protect against free radical injury in isolated working rat hearts. J Mol Cell Cardiol. 1989;21(12):1261–71.

    Article  PubMed  CAS  Google Scholar 

  363. Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor kappa B, a ubiquitous transcription factor in the initiation of diseases. Clin Chem. 1999;45(1):7–17.

    PubMed  CAS  Google Scholar 

  364. Santi D, Giannetta E, Isidori AM, Vitale C, Aversa A, Simoni M. Therapy of endocrine disease: effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a meta-analysis. Eur J Endocrinol. 2015;172(3):R103–14. https://doi.org/10.1530/EJE-14-0700.

    Article  PubMed  CAS  Google Scholar 

  365. Pofi R, Gianfrilli D, Badagliacca R, Di Dato C, Venneri MA, Giannetta E. Everything you ever wanted to know about phosphodiesterase 5 inhibitors and the heart (but never dared ask): how do they work? J Endocrinol Investig. 2016;39(2):131–42. https://doi.org/10.1007/s40618-015-0339-y.

    Article  CAS  Google Scholar 

  366. Nam YJ, Song K, Olson EN. Heart repair by cardiac reprogramming. Nat Med. 2013;19(4):413–5. https://doi.org/10.1038/nm.3147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  367. Hodgkinson CP, Kang MH, Dal-Pra S, Mirotsou M, Dzau VJ. MicroRNAs and cardiac regeneration. Circ Res. 2015;116(10):1700–11. https://doi.org/10.1161/CIRCRESAHA.116.304377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  368. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73. https://doi.org/10.1161/CIRCRESAHA.112.269035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  369. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006;103(23):8721–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  370. Takaya T, Nishi H, Horie T, Ono K, Hasegawa K. Roles of microRNAs and myocardial cell differentiation. Prog Mol Biol Transl Sci. 2012;111:139–52. https://doi.org/10.1016/B978-0-12-398459-3.00006-X.

    Article  PubMed  CAS  Google Scholar 

  371. Joladarashi D, Thandavarayan RA, Babu SS, Krishnamurthy P. Small engine, big power: microRNAs as regulators of cardiac diseases and regeneration. Int J Mol Sci. 2014;15(9):15891–911. https://doi.org/10.3390/ijms150915891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  372. Katz MG, Fargnoli AS, Pritchette LA, Bridges CR. Gene delivery technologies for cardiac applications. Gene Ther. 2012;19(6):659–69. https://doi.org/10.1038/gt.2012.11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  373. Küçüker SA, Stetson SJ, Becker KA, Akgül A, Loebe M, Lafuente JA, Noon GP, Koerner MM, Entman ML, Torre-Amione G. Evidence of improved right ventricular structure after LVAD support in patients with end-stage cardiomyopathy. J Heart Lung Transplant. 2004;23(1):28–35.

    Article  PubMed  Google Scholar 

  374. Sachse FB, Torres NS, Savio-Galimberti E, Aiba T, Kass DA, Tomaselli GF, Bridge JH. Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ Res. 2012;110(4):588-97. Circ Res. 2012;110(4):588–97. https://doi.org/10.1161/CIRCRESAHA.111.257428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  375. Barbone A, Holmes JW, Heerdt PM, et al. Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation. 2001;104(6):670–5.

    Article  PubMed  CAS  Google Scholar 

  376. Klotz S, Naka Y, Oz MC, Burkhoff D. Biventricular assist device-induced right ventricular reverse structural and functional remodeling. J Heart Lung Transplant. 2005;24(9):1195–201.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bontaş, E., Radu-Ioniţă, F., Munteanu, A., Mocanu, I. (2018). Basic Aspects of Cardiac Remodelling. In: Dumitrescu, S., Ţintoiu, I., Underwood, M. (eds) Right Heart Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-73764-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73764-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73763-8

  • Online ISBN: 978-3-319-73764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics