Skip to main content

Coherent Diffraction Imaging with Tabletop XUV Sources

  • Conference paper
  • First Online:
  • 1207 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 202))

Abstract

Coherent diffraction imaging (CDI) at wavelengths in the extreme ultraviolet range has become an important tool for nanoscale investigations. Employing laser-driven high harmonic sources allows for lab-scale applications such as cancer cell classification and phase-resolved surface studies in reflection geometry. The excellent beam properties support a spatial resolution below the wavelength, i.e., close to the Abbe limit. Unfortunately, the usually low photon flux of HHG sources limits their applicability. Recent advances in ultrafast fiber laser development cumulated in sources delivering average powers approaching the milliwatt level in the extreme ultraviolet. In comparison, a tabletop soft X-ray laser driven by moderate pump energies was recently employed for CDI featuring excellent temporal coherence and extraordinary high flux allowing for single-shot imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sandberg, R.L., et al.: Studies of materials at the nanometer scale using coherent X-ray diffraction imaging. JOM 65, 1208 (2013)

    Article  Google Scholar 

  2. Krausz, F., Ivanov, M.: Attosecond physics. Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  3. Zuerch, M., et al.: Real-time and sub-wavelength ultrafast coherent diffraction imaging in the extreme ultraviolet. Sci. Rep. 4, 7356 (2014)

    Article  Google Scholar 

  4. Zuerch, M., et al.: XUV coherent diffraction imaging in reflection geometry with low numerical aperture. Opt. Express 21, 21131–21147 (2013)

    Article  ADS  Google Scholar 

  5. Gardner, D.F., et al.: High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination. Opt. Express 20, 19050 (2012)

    Article  ADS  Google Scholar 

  6. Shanblatt, E.R., et al.: Quantitative chemically-specific coherent diffractive imaging of reactions at buried interfaces with few-nanometer precision. Nano Lett. (2016). https://doi.org/10.1021/acs.nanolett.6b01864 (accepted manuscript)

  7. Zuerch, M., et al.: Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source. J. Med. Imaging 1, 031008 (2014)

    Article  Google Scholar 

  8. Witte, S., et al.: Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths. Light Sci. Appl. 3, e163 (2014)

    Article  Google Scholar 

  9. Thibault, P., et al.: High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008)

    Article  ADS  Google Scholar 

  10. Winterfeldt, C., et al.: Colloquium: optimal control of high-harmonic generation. Rev. Mod. Phys. 80, 117–140 (2008)

    Article  ADS  Google Scholar 

  11. Müller, M., et al.: 1 kW 1 mJ eight-channel ultrafast fiber laser. Opt. Lett. 41, 3439–3442 (2016)

    Article  ADS  Google Scholar 

  12. Hädrich, S., et al.: 200 W average power energetic few-cycle fiber laser. In: High-Brightness Sources and Light-Driven Interactions, p. JT3A.1. Optical Society of America (2016)

    Google Scholar 

  13. Rothhardt, J., et al.: Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J. Phys. 16, 033022 (2014)

    Article  ADS  Google Scholar 

  14. Hädrich, S., et al.: High photon flux table-top coherent extreme ultraviolet source. Nat. Photonics 8, 779–783 (2014)

    Article  ADS  Google Scholar 

  15. Rothhardt, J., et al.: High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. Opt. Lett. 24(16), 18133–18147 (2016)

    Google Scholar 

  16. Tadesse, G.K., et al.: High speed and high resolution table-top nanoscale imaging. Opt. Lett. 41(22), 5170–5173 (2016)

    Google Scholar 

  17. Rothhardt, J., et al.: 53 W average power few-cycle fiber laser system generating soft X rays up to the water window. Opt. Lett. 39, 5224 (2014)

    Article  ADS  Google Scholar 

  18. Guggenmos, A., et al.: Chromium/scandium multilayer mirrors for isolated attosecond pulses at 145 eV. Opt. Lett. 40, 2846–2849 (2015)

    Article  ADS  Google Scholar 

  19. Stutzki, F., et al.: 152 W average power Tm-doped fiber CPA system. Opt. Lett. 39, 4671–4674 (2014)

    Article  ADS  Google Scholar 

  20. Suckewer, S., Jaegle, P.: X-ray laser: past, present, and future. Laser Phys. Lett. 6, 411–436 (2009)

    Article  Google Scholar 

  21. Nickles, P.V., et al.: Short pulse X-ray laser at 32.6 nm based on transient gain in neon-like titanium. Phys. Rev. Lett. 78, 2748–2751 (1997)

    Article  ADS  Google Scholar 

  22. Tuemmler, J., et al.: 10-Hz grazing incidence pumped Ni-like Mo X-ray laser. Phys. Rev. E 72, 0374011–0374014 (2005)

    Google Scholar 

  23. Keenan, R., et al.: High-repetition-rate grazing-incidence pumped X-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 1039011–1039014 (2005)

    Article  Google Scholar 

  24. Wang, Y., et al.: Demonstration of high-repetition-rate tabletop soft-X-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm. Phys. Rev. A 72, 7 (2005)

    Google Scholar 

  25. Cassou, K., et al.: Optimization toward a high-average-brightness soft-X-ray laser pumped at grazing incidence. Opt. Lett. 32, 139–141 (2007)

    Article  ADS  Google Scholar 

  26. Hasegawa, N., et al.: High-precision measurement of the spectral width of the nickel-like molybdenum X-ray laser. JCPS 163, 012062 (2009)

    Google Scholar 

  27. Lucianetti, A., et al.: Transverse spatial coherence of a transient nickellike silver soft-X-ray laser pumped by a single picosecond laser pulse. Opt. Lett. 29, 881–883 (2004)

    Article  ADS  Google Scholar 

  28. Wang, Y., et al.: High-brightness injection-seeded soft-X-ray-laser amplifier using a solid target. Phys. Rev. Lett. 97, 123901/1-4 (2006)

    Google Scholar 

  29. Baumgarten, C., et al.: 1 J, 0.5 kHz repetition rate picosecond laser. Opt. Lett. 41, 3339–3342 (2016)

    Article  ADS  Google Scholar 

  30. Kang, H.C., et al.: Single-pulse coherent diffraction imaging using soft X-ray laser. Opt. Lett. 37, 1688–1690 (2012)

    Article  ADS  Google Scholar 

  31. Luther, B.M., et al.: Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum. Opt. Lett. 30, 165–167 (2004)

    Article  ADS  Google Scholar 

  32. Guggenmos, A., et al.: Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity. Opt. Exp. 22, 26526–26536 (2014)

    Article  ADS  Google Scholar 

  33. Guggenmos, A., et al.: Aperiodic CrSc multilayer mirrors for attosecond water window pulses. Opt. Express 21, 21728–21740 (2013)

    Article  ADS  Google Scholar 

  34. Zürch, M., et al.: Transverse coherence limited coherent diffraction imaging using a molybdenum soft X-ray laser pumped at moderate pump energies. Sci. Rep. 7, 5314 (2017)

    Google Scholar 

  35. Klas, R., et al.: Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica 3(11), 1167–1170 (2016)

    Google Scholar 

  36. Depresseux, A., et al.: Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photonics 9, 817–821 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by German Federal Ministry of Education and Research BMBF German–Korean collaboration program (01DR12011), the Korea–Germany program (Korean NRF 2010-00633, BK21), BMBF contracts 13N12082 “NEXUS” and 05P2015 “APPA,” LaserLab Europe (INREX), EFRE (ProFit), the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC Grant agreement no [240460] “PECS,” by the European Research Council under the ERC grant agreement no. [617173] “ACOPS” and the German Research Foundation (DFG) via the Excellence Cluster “Munich-Centre for Advanced Photonics” (MAP, EXC 158). M. Zürch acknowledges support from the Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zürch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zürch, M. et al. (2018). Coherent Diffraction Imaging with Tabletop XUV Sources. In: Kawachi, T., Bulanov, S., Daido, H., Kato, Y. (eds) X-Ray Lasers 2016. ICXRL 2016. Springer Proceedings in Physics, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-319-73025-7_35

Download citation

Publish with us

Policies and ethics